03/2019

7390673 /09

Programming Manual

ExtendedController
CR0232

Runtime system V01.00.03
CODESYS V2.3

English

ExtendedController CR0232

Contents
1 About this manual 5
11 (07010111 | o SERT T T PP PPPPPPTPPP 5
1.2 Overview: documentation MOAUIES fOT........c.uuiiiiiiiiieiii e 5
13 What do the symbols and formats Mean?cooiiiiiiiiiiie e 6
14 How is this documentation STTUCIUIEA?ccoiuiiiiiiiiiie it 6
15 History of the INStructions (CRO232).......ccuviiiiieee et e e e e e e e e s nnarane s 7
2 Safety instructions 9
2.1 PIEASE NOLE! ...t e e e e sttt e e e e e s s bbb e et e e e e e snnenrteeeaeeeeaannrrnnees 9
2.2 What previous knowledge is required? ... 10
2.3 Start-up behaviour Of the CONrOEN...........euvviiiiiiiiiieeeeee e 10
2.4 NOLES: SEral NUMDEToiiiiiii e 10
2.5 NOLES: TEST INPULS e, 11
3 System description 12
3.1 Information concerning the dEVICEcocveiiiiiiiii e 12
3.2 Hardware desCriplion ..o 13
321 HAIOWATE SEUCTUIEeeiiiie ettt ettt et e bt e e et e e e b e e e anb e e e snne e e e nnnes 14
3.2.2 Operating principle of the delayed SWItCh-0Off............cooiiiii e 17
3.23 Relays: IMPOItANT NOTES!ottt e st e 18
3.24 o] a1 (] gl gl I oTo] g o1=T o | TP PP UP ST PPPPPP 19
3.25 INPULS (EECNNOIOQY) ... ettt e e e e et e e e e e e st e e e e e e e e e aanees 23
3.2.6 (@101 o101 SR ((=Tod a1 gTo] (o]0 |V I T PO PPTP PP 27
3.2.7 [N To) (= o] o Y 11 o TSP PP SPTPPPRPP 32
3.28 Safety instructions about REed relaysScoiiiiiiiiiiiii e 32
3.2.9 Feedback in case of externally supplied OULPULSoooiiiiiiiiiiee e 33
3.2.10] = LD (3 SRR P R TPPRPR 34
3.3 Interface desCriPtioN ... 36
331 SEHAIINTEITACE ...eeiei ittt s e et e e st 36
3.3.2 USB INEEITACE ...ttt ettt et e b e e et e e s b e e e aa bt e e abne e e s nnes 36
3.33 CAN INEEITACES ... eeeiiiie ettt e e et e e e e st e e e st e e 37
3.4 SOftWAre AESCIIPLION .. .eeiiieiiiiie et e e 38
341 Software modules fOr the AEVICEc.cviiiiiiiii s 39
342 Programming notes for CODESYS PrOJECESccuuuuiiiiieiiiiiiieie ettt e e 41
343 OPEIALING STALES .. ittt e ettt e e e e e e st e e e e e e e s e bbb bt e e e e e e s e nbbb b e e e e e e e aannnenneeas 45
344 (@)1= = 1] g To T 0 T o (=SSOSO PRPTT TP 49
3.45 Performance limits 0f the deVICE ..o 50
4 Configurations 51
4.1 Set Up the FUNLIME SYSTEIMoiiiiiie et e e e e e e e e e e e e aneaes 52
41.1 Reinstall the runtime SYSIEM ... e 52
4.1.2 Update the FUNLIME SYSTEIM......eiiiiiiiiiiiiit ettt e b e e st e e e abne e e nanes 53
4.1.3 Verify the INSTAIIALIONoc.uiiii e e e e e 53
4.2 Set up the programming SYSIEMcouuiiiiiiiii et 54
421 Set up the programming SyStemM MAaNUAIYcceeiiiiiiieiiiiie e 55
4.2.2 Set up the programming system via templates. ... 57
4.3 Function configuration in gENEIal............oouiiiiiiiiii e 57
43.1 Configuration of the inputs and outputs (default Setting)coeeviiiiiiii e 57
4.3.2 SYSIEM VAIADIES ...ttt e et e e e e e e st e e e e e e e e nnreeeeas 57
4.4 Function configuration of the inputs and OULPULScooiiiiiiiiiiiiie i 58
441 (7] 1 11081 LI o] 01U | £ TP ERTT TP 59
4.4.2 CONFIQUIE OULPULS ...ttt e e e e e ettt e e e e e e s e bbb et e e e e e e e e naataeeeaaeeaannnsneeeas 62

ExtendedController CR0232

4.5 RV =TT o] L PRt 66
451 REtAIN VAMADIES.......coiiiiiiii et 66
452 NEIWOIK VAIADIES ...t e e e et e e e e e s e naaereeaae e an 67

5 ifm function elements 68

5.1 ifm libraries for the device CRO232.........cooiiiiiiiiiiiie e 69
51.1 Library ifm_CR0232_V010003.LIB........cciititiiieiiieiiieaieeeiee sttt sttt sb e sneesnbeesnee e 69
5.1.2 Library ifm_CR0232_CANopenxMaster_VXXYYZZ.LIBcooiiiiiiiiiiieiae e 71
5.1.3 Library ifm_CR0232_CANopenxSlave_Vxxyyzz.LIB
5.1.4 Library ifm_CR0232_J1939 VXXYYZZ.LIBcccoiiiiiiie ettt a e
5.1.5 Library ifm_hydraulic_32bit VXXYYZZ.LIBccouriiiiee et

5.2 ifm function elements for the device CRO232ccoooiiiiiiiiiie e
5.2.1 Function elements: CAN TQYEE 2.......coccuiiiiiie ettt e e e e e e e s sbrareeaeeeaan
5.2.2 Function elements: CANOPEN MASTEI.......coiuiiiiiiiie ettt e e e st e e e st e e s eneeeeesnnees
5.2.3 Function elements: CANopen slave
524 Function elements: CANopen SDOs
525 Function elements: SAE J1939oooiiiiiiiiiiiie et a e e e e e e e e e e aeeaas
5.2.6 Function elements: serial interface
5.2.7 Function elements: Optimising the PLC cycle via processing interrupts
5.2.8 Function elements: processing iNPUL VAIUEScoiuireiiiiieeiiiiee e
5.2.9 Function elements: adapting analogue ValUESccccooueeeiiiiieeniiiee e
5.2.10 Function elements: counter functions for frequency and period measurement
5.2.11 Function elements: PWM fUNCLIONSooiiiiiiiiiiicee e
5.2.12 Function elements: hydraulic control
5.2.13 Function elements: controllers...............

5.2.14 Function elements: SOftWArE FESEL...........uuiiiiiiei e e e e e e e e eas
5.2.15 Function elements: measuring / Setting Of iMeccoeiiiiiiiiiii e
5.2.16 Function elements: device temperature
5.2.17 Function elements: saving, reading and converting data in the memoryccccccevevveennnee.
5.2.18 Function elements: data access and data ChecK.............oooiiiiiiiiii e

6 Diagnosis and error handling 211

6.1 D] F= o | o [0 1] ST UPUPPPPTN 211

6.2 = LU || PP OUPUPPPPTN 211

6.3 Reaction iN CASE Of AN EITONuiiiiiie et e e e e e e e anees 212

6.4 Relay: IMPOrtant NOLES!eiiiiiiiii et 212

6.5 RESPONSE 10 SYSIEIM EITOIS ... 212

6.6 CAN / CANopen: errors and error handlingooooviiiiiniii e 213

7 Appendix

7.1 SYSEEM FlAGS. ..ttt
7.1.1 YA (] 0 R = T T O Y R UPUT
7.1.2 System flags: SAE-J1939.. ... e e as
7.1.3 System flags: error flags (standard side).....................

7.1.4 System flags: error flags (extended side)
7.15 System flags: status LED (standard side)....................
7.1.6 System flags: status LED (extended side)

7.1.7 System flags: voltages (standard side).............ccccue....
7.1.8 System flags: voltages (extended side)

7.1.9 System flags: 16 inputs and 16 outputs (standard side)
7.1.10 System flags: 16 inputs and 32 outputs (extended side)

7.2 Address assignment and /0O operating MOAES...........cooiiiiiiiiiiiieiiieee e
7.2.1 Addresses / variables Of the 1/OS..........ueiiiii e
7.2.2 Possible operating Modes INPULS/OULPULSoiiiieiiiiiie e e e

7.3 = g o] g r= Vo] [PSP OTPUPRRPTN
7.3.1 | g = 1o T TP PP PPPPPRRP
7.3.2 Errors: CAN / CANOPEIN....cciititeeeitt ettt e et e bt e e s b e e ettt e e et e e sabn e e e anbe e e e nnnns

ExtendedController CR0232

8 Terms and abbreviations 242

9 Index 256

ExtendedController CR0232

1 About this manual

Content

0] 0)/ T RS 5
Overview: documentation MOAUIES FOIiiiiiiiiieiie ettt e e e e e e e s e e e s e e e aab s eeeaesensrannaees 5
What do the symbols and fOrmats MEANT..........uuuiiiiiiiiiieie e e e e e e s e e e e e e e e nnnraeeeeas 6
How is this dOCUMENTAION STIUCIUIEA?ovvuiieiiiiieeeee e et e e e e e e e ee b e s e e e seesbsbaa s eeesesesessbaseseaees 6
History of the INSrUCtiONS (CRO232)uuiiiiieiiiiiiiiiieeie e e ee st e e e e e e s e st e e eeeesessantaaeeeeeeesassntaeneeaeeesaannnes 7

1.1 Copyright

26002

© All rights reserved by ifm electronic gmbh. No part of this manual may be reproduced and used
without the consent of ifm electronic gmbh.

All product names, pictures, companies or other brands used on our pages are the property of the respective rights owners:
+ AS-i is the property of the AS-International Association, (— www.as-interface.net)

+ CAN is the property of the CiA (CAN in Automation e.V.), Germany (— www.can-cia.org)

+ CODESYS™ is the property of the 3S — Smart Software Solutions GmbH, Germany (— www.codesys.com)

+ DeviceNet™ is the property of the ODVA™ (Open DeviceNet Vendor Association), USA (— www.odva.org)

+ EtherNet/IP®is the property of the —ODVA™

« EtherCAT® is a registered trade mark and patented technology, licensed by Beckhoff Automation GmbH, Germany
+ |0-Link® (— www.io-link.com) is the property of the —PROFIBUS Nutzerorganisation e.V., Germany

+ ISOBUS is the property of the AEF — Agricultural Industry Electronics Foundation e.V., Deutschland

(— www.aef-online.org)

+ Microsoft® is the property of the Microsoft Corporation, USA (— www.microsoft.com)

* Modbus® is the property of the Schneider Electric SE, France (— www.schneider-electric.com)

+ PROFIBUS® is the property of the PROFIBUS Nutzerorganisation e.V., Germany (— www.profibus.com)

* PROFINET® is the property of the —PROFIBUS Nutzerorganisation e.V., Germany

+ Windows® is the property of the —Microsoft Corporation, USA

1.2 Overview: documentation modules for

28035

The documentation for this devices consists of the following modules:
(Downloads from ifm's website — www.ifm.com

Document Contents / Description

Data sheet Technical data in a table

Installation instructions . Instructions for installation, electrical installation, and commissioning
(are_ supplied with the Technical data

device)

Programming manual e Functions of the setup menu of the device
e Creation of a CODESYS project with this device
e Target settings with CODESYS
. Programming of the device-internal PLC with CODESYS
. Description of the device-specific CODESYS function libraries

System manual Know-how about the following topics (examples):
"Know-How ecomatmobile” | gyeriew Templates and demo programs

. CAN, CANopen

e Control outputs

e Visualisations

e Overview of the files and libraries

http://www.as-interface.net/
http://www.can-cia.org/
http://www.codesys.com/
http://www.odva.org/
http://www.io-link.com/
http://www.aef-online.org/
http://www.microsoft.com/
http://www.schneider-electric.com/
http://www.profibus.com/
http://www.ifm.com/

ExtendedController CR0232

1.3 What do the symbols and formats mean?

26329
The following symbols or pictograms illustrate the notes in our instructions:

A WARNING

Death or serious irreversible injuries may result.

A CAUTION

Slight reversible injuries may result.

NOTICE

Property damage is to be expected or may result.

] Important note
° Non-compliance can result in malfunction or interference
ﬁ Information
Supplementary note
> .. Request for action
> . Reaction, result
— . "see"”
abc Cross-reference
123 Decimal number

0x123 Hexadecimal number
0b010 Binary number

[...] Designation of pushbuttons, buttons or indications

1.4 How is this documentation structured?

204
26041

This documentation is a combination of different types of manuals. It is for beginners and also a
reference for advanced users. This document is addressed to the programmers of the applications.

How to use this manual:

¢ Refer to the table of contents to select a specific subject.

e Using the index you can also quickly find a term you are looking for.

e At the beginning of a chapter we will give you a brief overview of its contents.
e Abbreviations and technical terms — Appendix.

In case of malfunctions or uncertainties please contact the manufacturer at:
Contact — www.ifm.com

We want to become even better! Each separate section has an identification number in the top right
corner. If you want to inform us about any inconsistencies, indicate this number with the title and the
language of this documentation. Thank you very much for your support!

We reserve the right to make alterations which can result in a change of contents of the
documentation. You can find the current version on ifm's website:
— www.ifm.com

http://www.ifm.com/
http://www.ifm.com/

ExtendedController CR0232

1.5 History of the instructions (CR0232)
9188
What has been changed in this manual? An overview:
Date Theme Change
2010-09-13 configurations of Q16_MODE_E...Q31_MODE_E default value corrected
2010-11-10 Terminating resistors correction in topic 1244
2011-02-14 TIMER_READ_US (FB) conversion of max. counter value corrected
2011-04-05 Memory POUs FRAMREAD, FRAMWRITE, permitted values of the parameters SRC, LEN, DST
FLASHREAD, FLASHWRITE
2011-04-13 CANopen overview new: CANopen tables in the appendix
2011-12-13 INPUT_ANALOG parameter MODE
2012-10-04 diverse corrections
2013-06-24 various new document structure
2014-04-28 Various function blocks More precise description of the function block input
CHANNEL
2014-06-24 FB PID2 Graphic corrected
2014-06-30 Name of the documentation "System manual" renamed as "Programming manual”
2014-07-04 Device output ERROR (clamp 13) Output is not available. Reference note removed.
2014-07-31 FB PHASE Description of parameters of outputs C, ET corrected
2014-07-31 FB OUTPUT_CURRENT_CONTROL If preset value = 0 mA >> control to 0 "within 100 ms"
instead of "at once"
2014-08-26 Description of inputs, outputs highside / lowside replaced by positive / negative
switching
2014-11-12 Chapter "Outputs (technology)" Section "Diagnostics of the binary outputs"
supplemented or corrected
2015-01-13 Structure of documentation for error codes, system « error flags:
flags now only in the appendix, chapter System flags
» CAN / CANopen errors and error handling:
now only in the system manual "Know-How"
« error codes, EMCY codes:
now in the appendix, chapter Error tables
2015-03-10 Available memory Description improved
2015-05-26 FB J1939 x GLOBAL_REQUEST More precise description
2015-06-10 Various function blocks Description of the FB input CHANNEL corrected
2015-07-27 FB GET_IDENTITY added with output SERIALNUMBER
2015-07-27 FB GET_IDENTITY_EIOS new
2015-09-22 FB GET_IDENTITY_EIOS corrected
2015-09-22 english manual damaged images updated
2015-10-22 System flag bit SERIAL_MODE Debugging of the application program via USB is not
possible
2016-04-27 FBs for fast inputs Note in case of higher frequencies added
2017-01-13 Software manual for CODESYS 2.3 hint to download from the ifm homepage removed
2017-06-02 FRAM, MEMCPY, MEMSET: removed from manual, because value and start
Declaration for "remanent memory freely available to | address depend from hardware and software of the
the user" device
2017-06-02 Fast inputs Internal resistance of the signal source must be

substantially lower than the input resistance of the
used input

ExtendedController CR0232

Date Theme

2017-12-08 Addresses and variables of the 1/0s

2018-07-09 List of the ifm branch offices
2019-03 Outputs Q16_E...Q23_E/Q31_E

Change

Declaration of the input bytes and output bytes
removed because invalid

removed

Description added: Diagnosis: binary outputs (via
voltage measurement)

ExtendedController CR0232

2 Safety instructions
Content
L LoT LT o) = TP PP OPPRN 9
What previous KNoOWIEAgE iS FEQUINEA?cocuiiiiieie e e e it e e e st e e e e e e s e e e e e e e e s s nbnbaeeeeeeaeannnrnnnees 10
Start-up behaviour Of the CONIOIIETouiiiereee e e e e e e e e e e e e s rreeeaeeeeas 10
NOLES: SEHAI MUMDET ... et s et b bt e e st e e s bb e e e s aba e e e s nbaeeesnnneeee s 10
N0 (=T W S T o o £ O PES 11
28333
2.1 Please note!
214
28588

No characteristics are warranted on the basis of the information, notes and examples provided in this

manual. The drawings, representations and examples imply no responsibility for the system and no

application-specific particularities.

» The manufacturer of the machine/equipment is responsible for ensuring the safety of the
machine/equipment.

» Follow the national and international regulations of the country in which the machine/installation is
to be placed on the market!

A WARNING

Non-observance of these instructions can lead to property damage or bodily injury!
ifm electronic gmbh does not assume any liability in this regard.

» The acting person must have read and understood the safety instructions and the corresponding
chapters in this manual before working on and with this device.

» The acting person must be authorised to work on the machine/equipment.
» The acting person must have the qualifications and training required to perform this work.

» Adhere to the technical data of the devices!
You can find the current data sheet on ifm's homepage.

» Observe the installation and wiring information as well as the functions and features of the
devices!
— supplied installation instructions or on ifm's homepage

» Please note the corrections and notes in the release notes for the existing hardware, software and
documentation, available on the ifm website

Website — www.ifm.com

28588

The driver module of the serial interface can be damaged!

Disconnecting or connecting the serial interface while live can cause undefined states which damage
the driver module.

» Do not disconnect or connect the serial interface while live.

http://www.ifm.com/

ExtendedController CR0232

2.2 What previous knowledge is required?

28341
This document is intended for people with knowledge of control technology and PLC programming
with IEC 61131-3.
To program the PLC, the people should also be familiar with the CODESYS software.

The document is intended for specialists. These specialists are people who are qualified by their
training and their experience to see risks and to avoid possible hazards that may be caused during
operation or maintenance of a product. The document contains information about the correct handling
of the product.

Read this document before use to familiarise yourself with operating conditions, installation and
operation. Keep the document during the entire duration of use of the device.

Adhere to the safety instructions.

2.3 Start-up behaviour of the controller

6827
15233

A WARNING

Danger due to unintentional and dangerous start of machine or plant sections!

» When creating the program, the programmer must ensure that no unintentional and dangerous
start of machines or plant sections after a fault (e.g. e-stop) and the following fault elimination can
occur!
= Realise restart inhibit.

» In case of an error, set the outputs concerned to FALSE in the program!

A restart can, for example, be caused by:
* Voltage restoration after power failure
* Reset after the watchdog responded because the cycle time was too long
* Error elimination after an E-stop

To ensure safe controller behaviour:
» monitor the voltage supply in the application program.
» In case of an error switch off all relevant outputs in the application program.

» Additionally monitor actuators which can cause hazardous movements in the application program
(feedback).

» Monitor relay contacts which can cause hazardous movements in the application program
(feedback).

» If necessary, ensure that welded relay contacts in the application project cannot trigger or continue
hazardous movements.

2.4 Notes: serial number

28582

» In the user's production facility, draw a diagram of the controller network in the machine. Enter the
serial number of each controller installed into the network diagram.

» Before downloading a software component, read out this serial number and check the network
diagram to make sure that you are accessing the right controller.

10

ExtendedController CR0232

2.5 Notes: TEST inputs

28581

» The TEST inputs of all the controllers in the machine should be wired individually and marked
clearly so that they can be properly allocated to the controllers.

» During a service access only activate the TEST input of the controller to be accessed.

11

ExtendedController CR0232

3 System description
Content
Information conNCerniNg the AEVICEuuiiiiiiiiiiiiiiie e e e e e e e s e s e e e e e e s e sanraaeeeeaeeaaannnes 12
L F= L0 V2= T = LYY o] 1o O PEERS 13
1= = Vo= 0 0 L=EST o3]) 1 o OSSR 36
Y0 1011V V=0 (=TT 1) o) o RS 38
28392
3.1 Information concerning the device
6269

This manual describes of the ecomatmobile family for mobile machines of ifm electronic gmbh:
e ExtendedController: CR0232

12

ExtendedController CR0232

3.2 Hardware description

Content

L F= L0 V= TSI (0 o (1= PP 14
Operating principle of the delayed SWItCh-Off ... 17
Relays: IMPOITANT NOTES! ... ittt s bbbt e st et e e s b e e e s aann e e e s annn e e e s annneee s 18
1Y/ [a1 (] o o7 o =T o O PER 19
10T 01U £ (=T] o1 (oo Y PR 23
(@ 0} d o UL S (LT o o 1] (oo)V IS 27
NN o) (=0 V1.1 T PP ESES 32
Safety inStructions about REEA FEIAYSuuuiiiiieiiiiiiiie e e e e e e s e e e e e e e st eeeaaeeaan 32
Feedback in case of externally SUPPlied OULPULSoocoiiiiiiiiiiiiee e e e e e e e e e eanes 33
STATUS LED ..o 34

13

ExtendedController CR0232

3.21 Hardware structure

Content
Start CONAILIONS ..., 14
REIAYS ...tttk h et e+ 4 R R et e 4R R et e e R Rt e e nn e e e e nnn e e e e annneee s 14
T g o1 o] (= o] o Tod o 7= Lo | = Vo 1 O PEERS 15
F Y V1 F= 1] (= 1= 0o) Y/ 16
28382
Start conditions
28418

The device does not start until sufficient voltage is applied to the supply connection VBBs (e.g. supply
of the relays on the standard side) and to clamp 15.
In vehicles clamp 15 is the plus cable switched by the ignition lock.

* permissible operating voltage = 8...32 V
« start condition: VBBs > 10 V

Relays

19663
The ExtendedController has 4 internal output relays:
« standard side: 2 relays each separate 8 outputs from the terminal voltage VBBx (x=0Jr),
+ extended side: 2 relays each separate 16 outputs from the terminal voltage VBBx (x=1|2|3|4).
Separation is effected upon power-off of the relay.

The relays are only activated under the following condition:

« the global bit ERROR = FALSE

AND

« the bit RELAIS_VBBx = TRUE

In an active condition the relay contacts connect the outputs to the terminal voltage VBBXx.

@ Activate the corresponding outputs no earlier than > 45 ms after power-on of the relays!

14

ExtendedController CR0232

Principle block diagram

states of the system flags.

Clamp 15

CLAMP_15_VOLTAGE

Supply
SUPPLY_SWITCH

ERROR
RELAIS_VBBO

RELAIS_VBBR

(blue) = system flags

VBBS
&
=
— 5'
>I
>
o
o
2
[

Figure: principle block diagram of supply and relays (standard side)

EXTENDED

Supply relays

ERROR
RELAIS_VBBO_E

RELAIS_VBBR_E

(blue) = system flags

VBB3

'
m VBB3_RELAIS_E

|

Q16_E..Q23

VBBO VBBR
o % (o] 5
2 g
o _ o _
Q o
:>I >
o i
m m
m m
> >
w w
Q [0
S =
e} o}
g o
—— —— %J
5
g g
3 g
I
Q00...Q07 Q08...Q15
VBB1 VBB2
Q
UJI UJI
-— = O
[ii] m
> >
UJI UJI
2] 2]
b — 3 e
o o
FI NI
1] m
a [}
' > >
QO0_E...Q07_E
QO08_E..Q15_E

Figure: principle block diagram of supply and relays (extended side)

|

|

|
1

f
VBB4_RELAIS_E

Q24_E..Q31_E

19664
The following block diagrams show the dependence of the relays on the applied signals and the logic

15

ExtendedController CR0232

Available memory

FLASH-Speicher

FLASH memory (non-volatile, slow memory)
overall existing in the device

Thereof the following memory areas are reserved for ...
maximum size of the application program

data other than the application program
user can write data such as files, bitmaps, fonts

data other than the application program

read data with FLASHREAD (— p. 196) or write data with FLASHWRITE (—
p. 197)

(files: 128 bytes less for header)

The remaining rest of the memory is reserved for system internal purposes.

SRAM

SRAM (volatile, fast memory)
overall existing in the device
SRAM indicates here all kinds of volatile and fast memories.

Thereof the following memory areas are reserved for ...
data reserved by the application program

The remaining rest of the memory is reserved for system internal purposes.
FRAM

FRAM (non-volatile, fast memory)
overall existing in the device
FRAM indicates here all kinds of non-volatile and fast memories.

Thereof the following memory areas are reserved for ...
variables in the application program, declared as VAR_RETAIN

as remanent defined flags (from %MBO...)
P Set the end of the memory area by FB MEMORY_RETAIN_PARAM (—
p. 194)!

The remaining rest of the memory is reserved for system internal purposes.

16

28798

8136

2 176 kByte

1 280 kByte

128 kByte

64 kByte

8360

2 216 kByte

192 kByte

19547

128 kByte

4 kByte
4 kByte

ExtendedController CR0232

3.2.2 Operating principle of the delayed switch-off

28591

If the ecomatmobile controllers are disconnected from the supply voltage (ignition off), all outputs are
normally switched off at once, input signals are no longer read and processing of the controller
software (runtime system and application program) is interrupted. This happens irrespective of the
current program step of the controller.

If this is not requested, the controller must be switched off via the program. After switch-off of the
ignition this enables, for example, saving of memory states.

The ClassicControllers can be switched off via the program by means of a corresponding connection
of the supply voltage inputs and the evaluation of the related system flags. The block diagram in the
chapter Hardware structure (— p. 14) shows the context of the individual current paths.

Connect terminal VBB15 to the ignition switch
2418

The internal PLC electronics is initialised via the terminal VBB15 if at terminal VBBs supply voltage is
applied.

These terminals VBB15 and VBBs are monitored internally. The applied terminal voltage VBB15 can
be monitored via the system flag CLAMP_15 VOLTAGE. The applied terminal voltage VBBs can be
monitored via the system flag SUPPLY_VOLTAGE.

Latching

2419
Power-on of the controller:
e voltage is applied to VBB15 (clamp 15*) by means of the ignition switch.

e The system flag CLAMP_15 VOLTAGE recognises the voltage that has been applied and
activates the system flag SUPPLY_SWITCH.

e SUPPLY_SWITCH activates the connection to the potential VBBs.
> The ignition switch is bypassed. Latching of the control voltage is established.

Power-off of the controller via clamp 15:

e The system flag CLAMP_15 VOLTAGE recognises the switching off of the supply voltage on
terminal VBB15.

» Reset the system flag SUPPLY_SWITCH in the application program.
> Latching via VBBs is removed and the controller switches off completely.

*) In vehicles clamp 15 is the plus cable switched by the ignition lock.

17

ExtendedController CR0232

3.2.3 Relays: important notes!

12976
Assignment relays — potentials: — data sheet
Max. total current per relay contact (= per output group): — data sheet

NOTICE

Risk of destruction of the relay contacts!

In an emergency situation, "sticking" relay contacts can no longer separate the outputs from the power
supply!

If VBBS (VBBrel) and clamp 15 are separated from the power supply at the same time, but the
potentials VBBXx stay connected to it, then the relays can drop even before the outputs are deactivated
by the system.

In this case the relays separate the outputs from the power supply under load. This significantly
reduces the life cycle of the relays.

» If VBBX is permanently connected to the power supply:

» also connect VBBS (VBBrel) permanently and
* switch off the outputs via the program with the help of clamp 15.

18

ExtendedController CR0232

3.24 Monitoring concept

Content

Monitoring of the Supply VOITRGES VBBXuuiiiiiiiiiiii e 19
Operating principle of the MONItONING CONCEPL.......coiuuiiiiiiiit et 21
R dE] (=1 (= Lot =IV 0] =T T= T 0 U1 o1 | PRSP 22

The controller monitors the supply voltages and the system error flags.
Depending on the status...
« the controller switches off the internal relays
> the outputs are de-energised, but retain their logic state
> the program continues to run
or:
« the runtime system deactivates the controller
> the program stops
> the outputs change to logic "0"
> the status LED goes out

Monitoring of the supply voltages VBBx

6752
In case of a fault we differentiate 2 scenarios:

Terminal voltage VBBXx falls below the limit value of 5.25 V
15752
> The controller detects undervoltage. The outputs supplied by the terminal voltage VBBx are
deactivated.
> If the terminal voltage recovers and returns to the normal range (> 10 V), the outputs are

reactivated.
32395

A WARNING

Dangerous restart possible!
Risk of personal injury! Risk of material damage to the machine/plant!

If in case of a fault an output is switched off via the hardware, the logic state generated by the
application program is not changed.
» Remedy:

* Reset the output logic in the application program!

* Remove the fault!

* Reset the outputs depending on the situation.

19

ExtendedController CR0232

Terminal voltage VBBs falls below the limit value of 10 V
20638

> The controller continues to operate until the voltage has dropped so far that the internal voltages
created from it also drop.

() Below 10 V no retain data is saved. — flag RETAIN_WARNING

> In case of a drop of the internal voltages the controller goes into reset.
Execution of the runtime and application programs is interrupted.
This happens irrespective of the current program step of the PLC.

> Arestart of the controller is not carried out before the supply voltages are above the limit value
again.

20

ExtendedController CR0232

Operating principle of the monitoring concept
2421

A WARNING

Danger due to unintentional switch-off of all outputs!

If monitoring routines detect a system error:
> the device deactivates the energy for all outputs.

During program processing the output relays are completely controlled via the software by the user.
So a parallel contact of the safety chain, for example, can be evaluated as an input signal and the
output relay can be switched off accordingly. To be on the safe side, the corresponding applicable
national regulations must be complied with.

If an error occurs during program processing, the relays can be switched off using the system flag bit
ERROR to disconnect critical plant sections.

@ Manual setting of a flag bit ERROR_VBB... has NO effects on the relays!

A WARNING

Danger due to unintentional and dangerous start of machine or plant sections!

» When creating the program, the programmer must ensure that no unintentional and dangerous
start of machines or plant sections after a fault (e.g. e-stop) and the following fault elimination can
occur!
= Realise restart inhibit.

» In case of an error, set the outputs concerned to FALSE in the program!

@ If a watchdog error occurs, ...
> the program processing is interrupted automatically
> the outputs become currentless and go to logical "0"
> the controller is reset
> the controller then starts again as after power on.

21

ExtendedController CR0232

Reference voltage output

2250
13934

The reference voltage output is used to supply sensors with a stable voltage which is not subjected to

the fluctuations of the supply voltage.
13402

Reference voltage output can get damaged!
» Do NOT apply any external voltage!

Via the binary system variables REFERENCE_VOLTAGE_5 or REFERENCE_VOLTAGE_10 the
voltage is set on the reference voltage output [Vrer OUT]:

Reference voltage

REFERENCE_VOLTAGE_10 REFERENCE_VOLTAGE_5 [Ver OUT]
FALSE FALSE oV
FALSE TRUE 5V
TRUE FALSE oV
TRUE TRUE oV

» |If reference voltage = 10 V selected:
supply the controller with min. 13 V!

» Voltage monitoring on the reference voltage output with system variable REF_VOLTAGE.

> |f system variable ERROR = TRUE:
the reference voltage output is deactivated (output = 0 V).

22

ExtendedController CR0232

3.25 Inputs (technology)

Content
F N =1 loTe BTN o] 01U PP PP PP PPPP PR PPPPPPN 23
=]t LY 0] LU PSP PP PP PP 24
[T o0 1o [0 10 o I 00 TR B PP PSPPSR 25
[T o0 1o [o 10 o I 00 I = b L T PSPPSR 26
28353
Analogue inputs
28803

The analogue inputs can be configured via the application program. The measuring range can be set
as follows:

« current input 0...20 mA

« voltage input 0...10 V

« voltage input 0...32 V

The voltage measurement can also be carried out ratiometrically (0...1000 %o, adjustable via function
blocks). This means potentiometers or joysticks can be evaluated without additional reference voltage.
A fluctuation of the supply voltage has no influence on this measured value.

As an alternative, an analogue channel can also be evaluated binarily.

(Min case of ratiometric measurement the connected sensors should be supplied with VBBs of the
device. So, faulty measurements caused by offset voltage are avoided.

28803
H(CR))
1
i | In = pin multifunction input n
! ; I> —(6) (CR) = device
; (1 (1) = input filter
1
ﬂ¢ :%%j l> —=—(5) (2) = analogue current measuring
H X (3a) = binary-input plus switching
H \ \I (3b) = binary-input minus switching
1
H *) L (4a) = analogue voltage measuring 0...10 V
! 2) \ (4a) (4b) (4b) = analogue voltage measuring 0...32 V
1
i Ll (5) = voltage
i (3a) { }(3b) (6) = reference voltage
i 1
H

Figure: principle block diagram multifunction input

23

ExtendedController CR0232

Binary inputs

1015
28811

The binary input can be operated in following modes:
* binary input plus switching (BL) for positive sensor signal
* binary input minus switching (BH) for negative sensor signal

Depending on the device the binary inputs can configured differently. In addition to the protective
mechanisms against interference, the binary inputs are internally evaluated via an analogue stage.
This enables diagnosis of the input signals. But in the application software the switching signal is
directly available as bit information

i
{0 '(+)
i
1
i
i 2a
i (a) In = pin binary-input n
E) (CR) = device
! (1) = input filter
I_"é %j 1 I> @ (2a) = input minus switching
i "X (2b) = input plus switching
1
1
! (3) = voltage
|
g (%)1
1
!)
Figure: basic circuit of binary input minus switching / plus switching for negative and positive sensor signals
I("‘) (+)
S |
A In = pin binary input n In In = pin binary input n
(S) = sensor (8) = sensor
(S)l
Q] ¢
Basic circuit of binary input plus switching (BL) Basic circuit of binary input minus switching (BH)
for positive sensor signal: for negative sensor signal:
Input = open = signal = low (GND) Input = open = signal = high (supply)

For some of these inputs (— data sheet) the potential can be selected to which it will be switched.

24

ExtendedController CR0232

Input group 100...115

20390
These inputs are a group of multifunction channels.

These inputs can be used as follows (each input separately configurable):
* analogue input 0...20 mA
* analogue input 0...10 V
* analogue input 0...32 V
* voltage measurement ratiometric 0...1000 %o
* binary input minus switching (BH) for negative sensor signal
* binary input plus switching (BL) for positive sensor signal
« fast input for e.g. incremental encoders and frequency or interval measurement
— chapter Possible operating modes inputs/outputs (— p. 233)

Sensors with diagnostic capabilities to NAMUR can be evaluated.

All inputs show the same behaviour concerning function and diagnosis.
Detailed description — chapter Address assignment inputs / outputs

In the application program, the system variables ANALOGOO...ANALOGxx can be used for
customer-specific diagnostics.

If the analogue inputs are configured for current measurement, the device switches to the safe voltage
measurement range (0...32V DC) and the corresponding error bit in the flag byte
ERROR_CURRENT_Ix is set when the final value (> 21.7 mA) is exceeded.

The device checks once a second if the current value is again below the limit value. When the value is
again below the limit value, the input automatically switches back to the current measurement range.

» Configuration of each input is made via the application program:
« FB INPUT_ANALOG (— p. 130) > input MODE
+ Configuration byte Ixx_MODE
* Fast inputs with the following FBs:

FAST_COUNT (— p. 138) Counter block for fast input pulses
FREQUENCY (— p. 140) Measures the frequency of the signal arriving at the selected channel
FREQUENCY_PERIOD (— p. 142) Measures the frequency and the cycle period (cycle time) in [us] at the indicated channel
INC_ENCODER (— p. 144) Up/down counter function for the evaluation of encoders
PERIOD (— p. 146) Measures the frequency and the cycle period (cycle time) in [us] at the indicated channel
PHASE (— p. 150) Reads a pair of channels with fast inputs and compares the phase position of the signals
33866

1
Example with configuration byte Ixx_MODE: =
The assignment sets the selected input to the IN_DIGITAL_ H- - Ta7 MODE

operating mode IN_DIGITAL_H with diagnosis: IN_DIAGNOSTIC

25

ExtendedController CR0232

33866

> The result of the diagnostics is for example shown by the following system flags:

System flags (symbol name) Type
ERROR_BREAK_Ix DWORD
(0...x, value depends on the device,

— data sheet)

ERROR_SHORT_Ix DWORD

(0...x, value depends on the device,
— data sheet)

Input group 100_E...I15_E

Description

input double word x: wire break error

or (resistance input): short to supply

[Bit O for input 0] ... [bit z for input z] of this group
Bit = TRUE: error

Bit = FALSE: no error

input double word x: short circuit error

only if input mode = IN_DIGITAL_H

[Bit O for input 0] ... [bit z for input z] of this group
Bit = TRUE: error

Bit = FALSE: no error

6887

In principle, the same statements as for the input group 100...115 apply.

Deviations:

» The symbolic addresses of the inputs are Inn_E.

» The symbolic addresses of the configuration variables are Inn_MODE_E.
» The symbolic addresses of the filters are Inn_FILTER_E

» The symbolic addresses of the digital filters are Inn_DFILTER_E

» The symbolic addresses of the other flags also end with'_E'.

26

ExtendedController CR0232

3.2.6 Outputs (technology)

Content

BINAIY OUEPULS ...ttt s et e e skt e skttt e e ke et e e e bbe et e s an e e e s nnn e e e s annneees
PWM OUEPULS ...ttt e e e e e st e e e e e e s e et e e e e e s n e e e e e e e snnnnne s
Output group QO (Q00...15) ... uuuieiieeie e e i ettt e e e e e e eeste e e e e e e ss et eeeeeeeesanbaaaeeeaeesaananraaaeaeeeeeaannnraees
Output group QOO0 _E...QL5 E ...ouuiiiiiiiiiiiiiiii ittt e e e et ea e e e e e e a e e et
Output group QLB _E...Q3BL _E ..oeiuiiiiiiiiiiiiiie ittt e e e et e e e e e

Binary outputs

The following operating modes are possible for the device outputs (— data sheet):
* binary output, plus switching (BH) with/without diagnostic function
* binary output minus switched (BL) without diagnostic function

|J(+) *)
!#I(L)
—D—' Qn Qn = pin output n Qn = pin output n
—0 : " (L) = load —D—' an (L) = load
(- :l

) ¢
Basic circuit of output plus switching (BH) Basic circuit of output minus switching (BL)
for positive output signal for negative output signal

PWM outputs

The following operating modes are possible for the device outputs (— data sheet):
* PWM output, plus switching (BH) without diagnostic function

L)
-)

Basic circuit of output plus switching (BH)
for positive output signal

lJ(+)
—D—' Qn Qn = pin output n
Y : (L) = load
(

28815

28815

28530

28530

27

ExtendedController CR0232

Output group QO (QO00...15)

2244
These outputs are a group of multifunction channels.

These outputs provide several function options (each output separately configurable):
* binary output, plus switching (BH), partly also minus switching (BL)

* analogue current-controlled output (PWMi)

* analogue output with pulse-width modulation (partly as H-bridge)

— chapter Possible operating modes inputs/outputs (— p. 233)

If the outputs are not used as PWM outputs, the diagnosis is carried out via the integrated current
measurement channels which are also used for the current-controlled output functions.

» Configuration of each output is made via the application program:
indicate the load currents — FB OUTPUT_CURRENT (— p. 156)
PWM output: — FB PWM1000 (— p. 160)
control H-bridge — FB OUTPUT_BRIDGE (— p. 153)

» Configure the current measuring range for outputs Q00...Q03 and Q08...Q11
(either 2 Aor 4 A):
— function block SET_OUTPUT_MODE > input CURRENT_RANGE

When using the H-bridge current control is not supported.

In case of a fault (e.g. short circuit) the outputs are switched off in 2 groups via the relay contacts.
33964

A WARNING

Dangerous restart possible!
Risk of personal injury! Risk of material damage to the machine/plant!

If in case of a fault an output is switched off via the hardware, the logic state generated by the
application program is not changed.

» Remedy:
* Reset the output logic in the application program!
* Remove the fault!
* Reset the outputs depending on the situation.

@ The outputs in the PWM mode support no diagnostic functions.

When used as digital output, configuration is carried out for each output using the system variables
Qxx_MODE. If the diagnosis is to be used, it must be activated in addition.

Wire break and short circuit of the output signal are (combined per output group) indicated separately
via the system variables ERROR_BREAK_Qx or ERROR_SHORT_Qx. The individual output error bits
can be masked in the application program, if necessary.

M NOTE

To protect the internal measuring resistors, OUT_OVERLOAD_PROTECTION should always be
active (default setting). Depending on the selected current measuring range protection is given from
2.25 Aor 4.5 A. The FB is not supported in the PWM mode and can be deactivated, if necessary.

@ For the limit values please make sure to adhere to the data sheet!

Depending on the operating temperature, a short circuit might no longer reliably be detected when the
short circuit current has reached a certain value since the output drivers are automatically and
temporarily deactivated for protection against self-destruction.

Wire break and short circuit detection are active when ...
« the output is configured as "binary plus switching" (BH) AND
« the output is switched ON.

28

ExtendedController CR0232

Diagnosis: binary outputs (via current measurement)

19398
28857

The diagnostics of these outputs is made via internal current measurement in the output:

lj O Ug
2 Figure: principle block diagram
(1) f | Ri an (1) Output channel
e (%))_ (2) Read back channel for diagnostics
@ (3) Pin output n
@) @) (4) Load
O GND

Diagnosis: overload (via current measurement)

19437
28851

Overload can only be detected on an output with current measurement.

Overload is defined as ...
"a nominal maximum current of 12.5 %".

Diagnosis: wire break (via current measurement)
28854

Wire-break detection is done via the read back channel inside the output.
Prerequisite for diagnosis: output = TRUE

no current flows on the resistor Ri (no voltage drops).

Diagnosis = wire break: Without wire break the load current flows through the series resistor Ri
generating a voltage drop which is evaluated via the read back channel.

Diagnosis: short circuit (via current measurement)
28850

Wire-break detection is done via the read back channel inside the output.
Prerequisite for diagnosis: output = TRUE

Diagnosis = short circuit against GND: the supply voltage drops over the series resistor Ri

29

ExtendedController CR0232

Output group QO00_E...Q15 E
6884
In principle, the same statements as for the first output group apply.
Deviations:
» The symbolic addresses of the outputs are Qnn_E.
» The symbolic addresses of the configuration variables are Qnn_MODE_E.
» The symbolic addresses of the other flags also end with'_E'".

@ For the limit values please make sure to adhere to the data sheet!

Diagnosis: binary outputs (via current measurement)

19398
28857

The diagnostics of these outputs is made via internal current measurement in the output:

. O g
@_l l_l Figure: principle block diagram
1 Ri Qn 1) Output channel
" l—l_"_: (%_ 22; Reaz back channel for diagnostics
@ (3) Pin output n
(2) L@ (4) Load
O GND

Diagnosis: overload (via current measurement)

19437
28851

Overload can only be detected on an output with current measurement.

Overload is defined as ...
"a nominal maximum current of 12.5 %".

Diagnosis: wire break (via current measurement)
28854

Wire-break detection is done via the read back channel inside the output.
Prerequisite for diagnosis: output = TRUE

no current flows on the resistor Ri (ho voltage drops).

Diagnosis = wire break: Without wire break the load current flows through the series resistor Ri
generating a voltage drop which is evaluated via the read back channel.

Diagnosis: short circuit (via current measurement)
28850

Wire-break detection is done via the read back channel inside the output.
Prerequisite for diagnosis: output = TRUE

Diagnosis = short circuit against GND: the supply voltage drops over the series resistor Ri

30

ExtendedController CR0232

Output group Q16_E...Q31_E
10955
In principle, the same statements as for the first output group apply.
Deviations:
» The symbolic addresses of the outputs are Qnn_E.
» The symbolic addresses of the configuration variables are Qnn_MODE_E.
» The symbolic addresses of the other flags also end with'_E'".
» The outputs are rated up to max. 2 A (fixed).
* The outputs have the fixed configuration binary plus switching.
* There is no system variable Qnn_FILTER_E.
+ Diagnosis: binary outputs (via voltage measurement)

@ For the limit values please make sure to adhere to the data sheet!

31

ExtendedController CR0232

3.2.7 Note on wiring

28579

The wiring diagrams (— installation instructions of the devices, chapter "Wiring") describe the standard
device configurations. The wiring diagram helps allocate the input and output channels to the IEC
addresses and the device terminals.

The individual abbreviations have the following meaning:

A Analogue input
BH Binary high side input: minus switching for negative sensor signal
Binary high side output: plus switching for positive output signal
BL Binary low side input: plus switching for positive sensor signal
Binary low side output: minus switching for negative output signal
CYL Input period measurement
ENC Input encoder signals
FRQ Frequency input
H bridge Output with H-bridge function
PWM Pulse-width modulated signal
PWMi PWM output with current measurement
IH Pulse/counter input, high side: minus switching for negative sensor signal
IL Pulse/counter input, low side: plus switching for positive sensor signal
R Read back channel for one output

Allocation of the input/output channels: — Catalogue, mounting instructions or data sheet

3.2.8 Safety instructions about Reed relays

28354

For use of non-electronic switches please note the following:
28354

(M contacts of Reed relays may be clogged (reversibly) if connected to the device inputs without
series resistor.

» Remedy: Install a series resistor for the Reed relay:
Series resistor = max. input voltage / permissible current in the Reed relay
Example: 32 V /500 mA = 64 Ohm

» The series resistor must not exceed 5 % of the input resistance RE of the device input (— data
sheet). Otherwise, the signal will not be detected as TRUE.
Example:
RE =3 000 Ohm
= max. series resistor = 150 Ohm

32

ExtendedController CR0232

3.29 Feedback in case of externally supplied outputs

28835

In some applications actuators are not only controlled by outputs of the PLC but additionally by
external switches. In such cases the externally supplied outputs must be protected with blocking

diodes (— see graphics below).

NOTICE

Destruction of outputs if there is inadmissible feedback!

not become potential-free (e.g. for RELAIS = FALSE).

back.

If actuators are externally controlled, the corresponding potential bar of the same output group must

Otherwise the terminal voltage VBBX is fed back to the potential bar of the output group via the
protective diode integrated in the output driver of the external connected output. A possibly other set
output of this group thus triggers its connected load. The load current destroys the output which feeds

» Protect externally supplied outputs by means of blocking diodes!

GND VBBO
—QYBBO -
s1 7 : I
|
. RELAIS |
I =FALSE .
—Q1=FALSE |

GND VBBO

Example:

The flag RELAIS switches off the
supply VBBo of the output group.

Without blocking diodes the external
switch S1 feeds the supply VBBo via
the internal protective diode (red) from
output Q1 to the internal potential bar
of the outputs.

If output Q2 = TRUE (— graphic), K2
will receive voltage via the protective
diode Q1 despite RELAIS = FALSE
(red lines). Due to overload this
protective diode burns out and the
output Q1 is destroyed!

Graphic: example wiring with blocking diodes
due to the danger of feedback

Remedy:

Insert the blocking diodes V1 and V2
(— green arrows)!

Successful:

If RELAIS = FALSE, K2 remains
switched off, even if Q2 = TRUE.

33

ExtendedController CR0232

® NOTE

Help for externally supplied outputs

» The externally supplied outputs must be decoupled via diodes so that no external voltage is
applied to the output terminal.

3.2.10 Status LED

20809
The operating states are indicated by the integrated status LED (default setting).

LED colour Display Description
Permanently off No operating voltage
Off
S s e
Briefly on Initialisation or reset checks
Yellow
J:l L A A A t (time frame = 200 ms)
Flashing with 0.2 Hz = TEST=FALSE: no runtime system loaded
Orange
J—,' — 'I—u‘> — t (time frame=15s)
Flashing with 5 Hz TEST=TRUE: no runtime system loaded
ereen RIRNSNENaNaTSTSNNCTI
t (time frame = 200 ms)
Flashing with 2 Hz Application = RUN
Green —
T — — — t (time frame = 200 ms)
Permanently on Application = STOP
Green
I —
Flashing with 2 Hz Application = RUN with error
Red
'— — - — t (time frame = 200 ms)
Briefly on FATAL ERROR
Red o,
—>t (time frame = 200 ms)
TEST=TRUE: Application = STOP and FATAL ERROR
red Permanently on TEST=FALSE: ERROR STOP / SYSTEM STOP

/.

The status LED can be changed by the programming system for the operating states STOP and RUN.

34

ExtendedController CR0232

Control the LED in the application program

13142

With this device the status LED can also be set by the application program. To do so, the following
system variables are used (— chapter System flags (— p. 215)):

System flags (symbol name) Type
LED WORD

LED_X WORD

LED_MODE WORD

Description

LED color for "LED switched on":

0x0000 = LED_GREEN (preset)
0x0001 = LED_BLUE

0x0002 = LED_RED

0x0003 = LED_WHITE

0x0004 = LED_BLACK

0x0005 = LED_MAGENTA
0x0006 = LED_CYAN

0x0007 = LED_YELLOW

LED color for "LED switched off":

0x0000 = LED_GREEN
0x0001 = LED_BLUE

0x0002 = LED_RED

0x0003 = LED_WHITE

0x0004 = LED_BLACK (preset)
0x0005 = LED_MAGENTA
0x0006 = LED_CYAN

0x0007 = LED_YELLOW

LED flashing frequency:

0x0000 = LED_2HZ (flashes at 2 Hz; preset)

0x0001 = LED_1HZ (flashes at 1 Hz)

0x0002 = LED_05HZ (flashes at 0.5 Hz)

0x0003 = LED_0HZ (lights permanently with value in LED)

® NOTE

» Do NOT use the LED color RED in the application program.

> In case of an error the LED color RED is set by the runtime system.
BUT: If the colors and/or flashing modes are changed in the application program, the above table

with the default setting is no longer valid.

35

ExtendedController CR0232

3.3 Interface description

Content

Y (= I L= = (o= 36
L0 Y 1 0L (=T = o] < 36
(OF A NN 101 (=] 2= (oI T 37

331 Serial interface

28346
This device features a serial interface.

The serial interface can generally be used in combination with the following functions:
* program download
» debugging
« free use of the application
28346

® NOTE

The serial interface is not available to the user by default, because it is used for program download
and debugging.

The interface can be freely used if the user sets the system flag bit SERIAL_MODE=TRUE.
Debugging of the application program is then only possible via any of the CAN interfaces.

Connections and data — data sheet

3.3.2 USB interface

14100
This device features a USB interface for program download and debugging.

Connections and data — data sheet
Install the USB driver on the PC — installation instructions / operating instructions

Settings in CODESYS for [Online] > [Communication Parameters...] via USB:

Device Runtime system version Parameter Value
CR0032 <V03.00.00 Baud rate 115200
CR0032 >V03.00.01 Baud rate 4800...57600
CR0033, CR0133 <V02.00.01 Baud rate 115200
CR0033, CR0133 >V02.00.02 Baud rate 4800...57600
CR0232, CR0233 all Baud rate 115200
CR0234, CR0235 all Baud rate 4800...57600
CR7n32 <V01.00.04 Baud rate 115200
CR7n32 >V01.00.05 Baud rate 4800...57600
CRON3n, CR7n32 all Motorola byteorder No
CRON3n, CR7n32 all Flow Control On

36

ExtendedController CR0232

3.3.3 CAN interfaces

Content
CAN: interfaces and PrOtOCOISuuiiiiiiiiie ittt s st e s asb e s e b e e e e nnbeeeeeennes 37

Connections and data — data sheet

CAN: interfaces and protocols

13820
32633

The devices are equipped with several CAN interfaces depending on the hardware design. Basically,
all interfaces can be used with the following functions independently of each other:

 Layer 2: CAN at level 2 (— chapter Function elements: CAN layer 2 (— p. 75))

» CANopen master (— chapter Function elements: CANopen master (— p. 84))

» CANopen slave (— chapter Function elements: CANopen slave (— p. 94))

* CANopen network variables (via CODESYS)

» SAE J1939 (for drive management, — chapter Function elements: SAE J1939 (— p. 107))
* bus load detection

« error frame counter

» download interface

* 100 % bus load without package loss

11793
The following CAN interfaces and CAN protocols are available in this ecomatmobile device:

CAN interface CAN 1 CAN 2 CAN 3 CAN 4
Default download ID ID 127 ID 126 ID 125 ID 124
CAN Layer 2 CAN Layer 2 CAN Layer 2 CAN Layer 2
CAN protocols CANopen CANopen CANopen CANopen
SAE J1939 SAE J1939 SAE J1939 SAE J1939

Standard baud rate = 125 Kbits/s

(2] which CANopen compatible interface works with which CANopen protocol is decided by the order
in which you append the subelements in the PLC configuration:

CODESYS > [PLC Configuration] > [CR0232 Configuration Vxx] > [Append subelement] >

[CANopen master] or [CANopen slave]

37

ExtendedController CR0232

3.4 Software description

Content

Software MOdulES fOr the TEVICEcooiieiiiiieii et a e e e baeeeeaeeeas 39
Programming Notes for CODESY'S PrOJECES.uuiiiuiiiieiiiiiieiiieee ettt 41
(@01 o 1] T] ¥= 1= O PP PPPPP 45
(@] 1= 7= 111 [.11 Lo [= SR 49
Performance IMitS Of the EVICEcooiuiiiiiiii e e e s snaeee s 50

38

ExtendedController CR0232

34.1 Software modules for the device

Content

[T0T0] 1[0 7= U0 [T 39
RUNTIME SYSTEIM ...ttt ettt ettt skttt e 4kttt e 4 hb et e 4kt ee e 4 sb et e e s sne e e e s bnn e e e s annneee s 39
PN o] 0] o= 4o 1 o] {0 |- o 40
] o] =TT PP 40

The software in this device communicates with the hardware as below:

software module Can user change the module? By means of what tool?
Application program es CODESYS,
with libraries y MaintenanceTool

Upgrade yes

MaintenanceTool
Downgrade yes

Runtime system *)

Bootloader no
(Hardware) no

*) The runtime system version number must correspond to the target version number in the CODESYS target system setting.
— chapter Set up the target (— p. 55)

Below we describe this software module:

Bootloader
28807
On delivery ecomatmobile controllers only contain the boot loader.
The boot loader is a start program that allows to reload the runtime system and the application
program on the device.
The boot loader contains basic routines...
« for communication between hardware modules,
« for reloading the operating system.
The boot loader is the first software module to be saved on the device.

Runtime system

28330
Basic program in the device, establishes the connection between the hardware of the device and the
application program.
— chapter Software modules for the device (— p. 39)
On delivery, there is normally no runtime system loaded in the controller (LED flashes green at 5 Hz).
Only the bootloader is active in this operating mode. It provides the minimum functions for loading the
runtime system, among others support of the interfaces (e.g. CAN).

Normally it is necessary to download the runtime system only once. Then, the application program can
be loaded into the controller (also repeatedly) without affecting the runtime system.

The runtime system is provided with this documentation on a separate data carrier. In addition, the
current version can be downloaded from the website of ifm electronic gmbh:
— www.ifm.com

39

http://www.ifm.com/

ExtendedController CR0232

Application program

28795
Software specific to the application, implemented by the machine manufacturer, generally containing
logic sequences, limits and expressions that control the appropriate inputs, outputs, calculations and
decisions.

28795

A WARNING

The user is responsible for the reliable function of the application programs he designed. If necessary,
he must additionally carry out an approval test by corresponding supervisory and test organisations
according to the national regulations.

Libraries

14117

ifm electronic offers several libraries (*.LIB) to match each device containing program modules for
the application program. Examples:

Library Use

ifm_CRO232_Vxxyyzz.LIB device-specific library
Must always be contained in the application program!

ifm_CRO232_CANopenxMaster_Vxxyyzz.LIB (optional)

x = 1...4 = number of the CAN interface if a CAN interface of the device is to be operated as a CANopen
master

ifm_CR@232_CANopenxSlave_Vxxyyzz.LIB (optional)

x = 1...4 = number of the CAN interface if a CAN interface of the device is to be operated as a CANopen
slave

ifm_CRO232_31939 Vxxyyzz.LIB (optional)
if a CAN interface of the device is to communicate with a Diesel
engine

Details: — chapter ifm libraries for the device CR0232 (— p. 69)

40

ExtendedController CR0232

34.2 Programming notes for CODESYS projects

Content

FB, FUN, PRG iN CODESYS ..ottt ittt et s et e e e et a e e antae e e enteas
Calculations and conversions in the application programcccccceeeiiiiieeniiiee e,
N0 (= LT 3o (= 0 =
(=Nl a o= o] o] [Tox= i To] a1 o] oo = 1o [P
IST- V= o o o] B o] (o] [T o R
L LS o 10 010 (0111] (o To 1=
Using ifm mMainteNanCe t00]cieiiiiiiiiiieie e e s s e e e e e e s e e e e e e e e snnrnnaeeeaeeeean

Here you receive tips how to program the device.
» See the notes in the CODESYS programming manual.

FB, FUN, PRG in CODESYS

In CODESYS we differentiate between the following types of function elements:

FB = function block
* An FB can have several inputs and several outputs.
* An FB may be called several times in a project.
« An instance must be declared for each call.
« Permitted: Call FB and FUN in FB.

FUN = function

* A function can have several inputs but only one output.

» The output is of the same data type as the function itself.
PRG = program

* A PRG can have several inputs and several outputs.

* A PRG may only be called once in a project.

* Permitted: Call PRG, FB and FUN in PRG.

.................. 42

28833

M NOTE

Function blocks must NOT be called in functions!
Otherwise: During execution the application program will crash.

All function elements must NOT be called recursively, nor indirectly!
An IEC application must contain max. 8,000 function elements!

Background:

All variables of functions...
« are initialised when called and
* become invalid after return to the caller.

Function blocks have 2 calls:
* an initialisation call and
« the actual call to do something.

Consequently that means for the FB call in a function:
* every time there is an additional initialisation call and
« the data of the last call gets lost.

41

ExtendedController CR0232

Calculations and conversions in the application program
28189

@M NOTE

If the following elements are required in the application program:

» mathematical functions (e.g. ATAN),

« calculations,

« conversions (e.g. REAL_TO_BYTE),

then the following applies to the values at the inputs and outputs of the corresponding operators:
» Strictly observe the admissible value range in each individual case!

> Otherwise, this may cause an FPU error in the controller.

Examples:
28189
The value of the target format that can max. represented is exceeded.
Example:
REAL_TO_INT (12345678.3)
> INT is limited to -32768...+32767 (only integers)

28189

An existing real number is obviously in the value range of the target format.
In reality, however, the number is outside the target format (because of the internal representation of
the real number).
Example:
DW := REAL_TO_DWORD (4294967295.0);
> The most accurate representation of 4294967295 in REAL is 4.294967296E9
> Therefore the value exceeds the max. permissible value of the target format by 1.
> DWORD is limited to 0...4294967295.

Note the cycle time!

28578
For the programmable devices from the controller family ecomatmobile numerous functions are
available which enable use of the devices in a wide range of applications.
As these units use more or fewer system resources depending on their complexity it is not always
possible to use all units at the same time and several times.

NOTICE

Risk that the device acts too slowly!
Cycle time must not become too long!

» When designing the application program the above-mentioned recommendations must be
complied with and tested.

» If necessary, the cycle time must be optimised by restructuring the software and the system
set-up.

42

ExtendedController CR0232

Creating application program

controller several times during the program development for testing:
In CODESYS: [Online] > [Login] > load the new program.

For each such download via CODESYS 2.3 the source code is translated again. The result is that
each time a new checksum is formed in the controller memory. This process is also permissible for
safety controllers until the release of the software.

Programming in CODESYS

[

[Project] > [Compile all]

yes

[Online] > [Create boot project] *)

[Online] > [Login]

New / changed?
Load the new program

TEST
device

*) depending on the device

In the memory added with CRC *)

SERIES
device

Test application

I yes

Downloader *) / Maintenance-Tool *):

*) Read CRC from PLC
and compare CRC to original

!

Downloader *) / Maintenance-Tool *):
Read program identifier
and compare it to requirement

Downloader *} / Maintenance-Tool *):

Write project to PLC

}

Downloader *) / Maintenance-Tool *):
Read project

Project file(s) (with CRC)

Graphics: Creation and distribution of the software

28845
The application program is generated by the CODESYS 2.3 programming system and loaded in the

43

ExtendedController CR0232

Save boot project
28359

0) Always save the related boot project together with your application project in the device. Only then
will the application program be available after a power failure in the device.

® NOTE

Note: The boot project is slightly larger than the actual program.

However: Saving the boot project in the device will fail if the boot project is larger than the available
IEC code memory range. After power-on the boot project is deleted or invalid.

» CODESYS menu [Online] > [Create boot project]
This is necessary after each change!

> After a reboot, the device starts with the boot project last saved.

> If NO boot project was saved:
* The device remains in the STOP operation after reboot.
* The application program is not (no longer) available.
* The LED lights green.

Using ifm downloader

28403
The ifm downloader serves for easy transfer of the program code from the programming station to the
controller. As a matter of principle each application software can be copied to the controllers using the
ifm downloader. Advantage: A programming system with CODESYS licence is not required.

Here you will find the current ifm downloader (min. V06.18.26):
Homepage — www.ifm.com

Using ifm maintenance tool

27717
The ifm Maintenance Tool serves for easy transfer of the program code from the programming station
to the controller. As a matter of principle each application software can be copied to the controllers
using the ifm Maintenance Tool. Advantage: A programming system with CODESYS licence is not
required.
Here you will find the current ifm Maintenance Tool:
Homepage — www.ifm.com

44

http://www.ifm.com/
http://www.ifm.com/

ExtendedController CR0232

343 Operating states

Content
Operating states: runtime system is not available...............ccooiiiiiiii e 45
Operating states: application program is not available ..o 46
Operating states: application program is availableccccooiiiiiiiiic e 47
27004 [=T [T g - (PP 47
LN IS = L L= (R L=< PSSRt 48
RS = = 48
RIUN STALE ... s 48
SYSTEM STOP SEALE ...ciuveieiiiiiiei ittt ee et ee ettt sttt s b e e s aas e e s aabbe e e e aabbee e s aabbe e e e aasbeeeeasbeeesanbeeeeannreas 48
28585
After power on the ecomatmobile device can be in one of five possible operating states:
+ BOOTLOADER
« INIT
*+ STOP
* RUN
* SYSTEM STOP (after ERROR STOP)
Operating states: runtime system is not available
28558

POWER OFF / RESET

C TEST pin connected j

BOOTLOADER

!

C Runtime system not available j
C Download runtime system D

Figure: operating states (here: runtime system is not available)

45

ExtendedController CR0232

Operating states: application program is not available

28587

possible from all operating states

+

'

INIT

C ERROR STOP)

!

STOP

+

—»C ERROR STOP j

SYSTEM STOP —

POWER OFF / RESET <—Gower-0ﬁ-0n necessaraj

Figure: operating states (here: application program is not available)

46

ExtendedController CR0232

Operating states: application program is available
28586

possible from all operating states

*

POWER OFF / RESET Power-Off-On necessar3D<—‘

|

Fatal error j INIT

-

C Last state = RUN) C Last state = STOP) C ERROR STOP)

o RUN STOP SYSTEM STOP —»
LCPLC command STOP

PLC command RUN

ERROR STOP)

L

Figure: operating states (here: application program is available)

Bootloader state
28806

No runtime system was loaded. The ecomatmobile controller is in the boot loading state. Before
loading the application software the runtime system must be downloaded.

> The LED flashes green (5 Hz).

47

ExtendedController CR0232

INIT state (Reset)

28313
Premise: a valid runtime system is installed.
This state is passed through after every power on reset:
> The runtime system is initialised.
> Various checks are carried out, e.g. waiting for correctly power supply voltage.
> This temporary state is replaced by the RUN or STOP state.
> The LED lights yellow.

Change out of this state possible into one of the following states:
* RUN
« STOP

STOP state

28422
This state is reached in the following cases:

e From the RESET state if:
* no program is loaded or
« the last state before the RESET state was the STOP state

e From the RUN state by the STOP command
+ only for the operating mode = Test (— chapter TEST mode (— p. 49)

> The LED lights green.

RUN state

28335
This state is reached in the following cases:

e From the RESET state if:
* the last state before the RESET state was the RUN state

e From the STOP state by the RUN command
+ only for the operating mode = Test (— chapter TEST mode (— p. 49)

> The LED flashes green (2 Hz).

SYSTEM STOP state

28385

The ecomatmobile controller goes to this state if a non tolerable error (ERROR STOP) was found.
This state can only be left by a power-off-on reset.

> The LED lights red.

48

ExtendedController CR0232

3.4.4 Operating modes

28589
Independent of the operating states the controller can be operated in different modes.

TEST mode

28409

NOTICE

Loss of the stored software possible!
In the test mode there is no protection of the stored runtime system and application software.

28409

M NOTE
> Connect the TEST connection to the supply voltage only AFTER you have connected the OPC
client!

This operating mode is reached by applying supply voltage to the test input
(— installation instructions > chapter "Technical data" > chapter "Wiring").

The ecomatmobile controller can now receive commands via one of the interfaces in the RUN or
STOP mode and, for example, communicate with the programming system.

Only in the TEST mode the software can be downloaded to the controller.
The state of the application program can be queried via the flag TEST.

(] Summary Test input is active:

* Programming mode is enabled

» Software download is possible

« Status of the application program can be queried
* Protection of stored software is not possible

Notes: TEST inputs

28581

» The TEST inputs of all the controllers in the machine should be wired individually and marked
clearly so that they can be properly allocated to the controllers.

» During a service access only activate the TEST input of the controller to be accessed.

49

ExtendedController CR0232

SERIAL_MODE

2548
The serial interface is available for the exchange of data in the application. Debugging the application
software is then only possible via all 4 CAN interfaces.
This function is switched off as standard (FALSE). Via the flag SERIAL_MODE the state can be
controlled and queried via the application program or the programming system.

— chapter Function elements: serial interface (— p. 119)

DEBUG mode

28844

If the input DEBUG of SET_DEBUG (— p. 208) is set to TRUE, the programming system or the
downloader, for example, can communicate with the controller and execute some special system
commands (e.g. for service functions via the GSM modem CANremote).

In this operating mode a software download is not possible because the test input (— chapter TEST
mode (— p. 49)) is not connected to supply voltage.

345 Performance limits of the device

28571

Note the limits of the device! — Data sheet

Watchdog behaviour

28352
In this device, a watchdog monitors the program runtime of the CODESYS application.

If the maximum watchdog time (approx. 100 ms) is exceeded:
> the device performs a reset and reboots.

This you can read in the flag LAST_RESET.

CODESYS functions

2254
You should note the following limits:

e Upto 2048 blocks (PB, FB...) are supported.

e Flags available for user — chapter Available memory (— p. 16).
Description of the retain flags — for the corresponding FBs.

50

ExtendedController CR0232

4 Configurations

Content

Set UP the FUNTIME SYSIEIM e e e e e e e e e e e e e s e st eeeee e e s e nantaeeeeaeeesaannnnneeeaaeanan 52
Set up the Programming SYSTEMieciii i ieiieeee e e s e s e e e e e e s e st eeeee e e s e st beeeeeaeeesaannntaeeeeaeeesannrnnneeeeaeeas 54
Function configuration iN gENEIALuuiiiiii i e e e e e e s e e e e e e e e s e ssnnbeeeeaeaeeeaannnes 57
Function configuration of the iNPUtS and OULPULSccoiiiiiiiiiiiiee e e e e e e e e e e eanes 58
B2 LT o] L= PP RPPPRR 66

28785

The device configurations described in the corresponding installation instructions or in the Appendix
(— p. 214) to this documentation are used for standard devices (stock items). They fulfil the requested
specifications of most applications.

Depending on the customer requirements for series use it is, however, also possible to use other
device configurations, e.g. with respect to the inputs/outputs and analogue channels.

51

ExtendedController CR0232

4.1 Set up the runtime system

Content

ReiNStall the FUNTIME SYSTEMeiiiiiiiiie ittt sb e s bbbt e st et e e s abb e e e e s nne e e e s annn e e e s annneeens 52
Update the MUNTIME SYSTEIM.......oiiiiiiiii ittt b et e st et e e s aab et e e s nne e e e s snnneeesannneee s 53
VErify the INSTAIALIONooiiiiiiee et e et e e s st e e e sabb e e e e sabneeeeanbneeeeanes 53

411 Reinstall the runtime system

14092
28531

On delivery of the ecomatmobile device no runtime system is normally loaded (LED flashes green at
5 Hz). Only the bootloader is active in this operating mode. It provides the minimum functions for
loading the runtime system (e.g. RS232, CAN).

Normally it is necessary to download the runtime system only once. The application program can then
be loaded to the device (also several times) without influencing the runtime system.

The runtime system is provided with this documentation on a separate data carrier. In addition, the
current version can be downloaded from the website of ifm electronic gmbh:
— www.ifm.com

28531

® NOTE

The software versions suitable for the selected target must always be used:
* runtime system (ifm_CR0232_Vxxyyzz.H86),

* PLC configuration (ifm_CR@232_Vxx.CFG),

« device library (ifm_CR@232_Vxxyyzz.LIB) and

« the further files.

\% version

xx: 00...99 target version number
yy: 00...99 release number

zz: 00...99 patch number

The basic file name (e.g. "CR8232") and the software version number "xx" (e.g. "02") must always have
the same value! Otherwise the device goes to the STOP mode.

The values for "yy" (release number) and "zz" (patch number) do not have to match.

28531

@ The following files must also be loaded:

« the internal libraries (created in IEC 1131) required for the project,
« the configuration files (*.CFG) and

« the target files (*. TRG).

(&) 1t may happen that the target system cannot or only partly be programmed with your currently
installed version of CODESYS. In such a case, please contact the technical support department of ifm
electronic gmbh.

Contact — www.ifm.com

The runtime system is transferred to the device using the separate program "ifm downloader".
The software can be downloaded from ifm's website, if necessary:
— www.ifm.com

Normally the application program is loaded to the device via the programming system. But it can also
be loaded using the ifm downloader if it was first read from the device (— upload).

52

http://www.ifm.com/
http://www.ifm.com/
http://www.ifm.com/

ExtendedController CR0232

4.1.2 Update the runtime system

An older runtime system is already installed on the device. Now, you would like to update the runtime
system on the device?

28404

Risk of data loss!
When deleting or updating the runtime system all data and programs on the device are deleted.
» Save all required data and programs before deleting or updating the runtime system!

For this operation, the same instructions apply as in the previous chapter 'Reinstall the runtime
system'.

4.1.3 Verify theinstallation

14407
33893

» After loading of the runtime system into the controller:
+ check whether the runtime system was transmitted correctly!
« check whether the right runtime system is on the controller!

» 1st check:
use the ifm downloader or the maintenance tool to verify whether the correct version of the
runtime system was loaded:
* read out the name, version and CRC of the runtime system in the device!
» Manually compare this information with the target data!

» 2nd check (optional):
verify in the application program whether the correct version of the runtime system was loaded:
* read out the name and version of the runtime system in the device!
» Compare this data with the specified values!
The following FB serves for reading the data:

GET_IDENTITY (— p. 206) Reads the specific identifications stored in the device:
+ hardware name and hardware version of the device
+ name of the runtime system in the device
« version and revision no. of the runtime system in the device
+ name of the application (has previously been saved by means of SET_IDENTITY (—
p. 209))
+ serial number of the device

» If the application detects an incorrect version of a runtime system:
bring all safety functions into the safe state.

53

ExtendedController CR0232

4.2 Set up the programming system

Content
Set up the programming SYSteM MAaNUAILYcooiiuiiiiiiiiee i 55
Set up the programming SyStem Via teMPIALESeiiiiiiiieiiiiii e 57

54

ExtendedController CR0232

42.1 Setup the programming system manually

Content
SEEUP TN TAIGET ..ottt e et e e ekt e e e bt e e e st e e e e nbe e e e e e e e 55
Activate the PLC configuration (€.g. CRO03B3)ccoiiitiiiiiiiiiiee ittt et e et ee e ssbeeeeessbeeeeeanes 56

Set up the target

2687
28316

When creating a new project in CODESYS the target file corresponding to the device must be loaded.

» Select the requested target file in the dialogue window [Target Settings] in the menu
[Configuration].

> The target file constitutes the interface to the hardware for the programming system.

> Atthe same time, several important libraries and the PLC configuration are loaded when selecting
the target.

» If necessary, in the window [Target settings] > tab [Network functionality] > activate [Support
parameter manager] and / or activate [Support network variables].

» If necessary, remove the loaded (3S) libraries or complement them by further (ifm) libraries.
» Always complement the appropriate device library ifm_CR0232_Vxxyyzz.LIB manually!

55

ExtendedController CR0232

Activate the PLC configuration (e.g. CR0033)

28916

During the configuration of the programming system (— previous section) the PLC configuration was
also carried out automatically.

» The menu item [PLC Configuration] is reached via the tab [Resources].

Double-click on [PLC Configuration] to open the corresponding window.

» Click on the tab [Resources] in CODESYS:

>
>

} — 1 w
F'I:ILlsl B Data t_l,lpesl "#'isualizatiunsl % 5] esnurcesl

In the left column double-click on [PLC Configuration].
Display of the current PLC configuration (example — following figure):

|
21 PLE Configuration
E—CRO033 Confguration Vi1

*

El--InpulsOupUIsFL]

BE--Inputs[FIx]

- Inpuls AnalogFix]
F--Oulpuls Currenl[Fi
E--Inpuls MiscallanepusiFIx]
Bi--Inputs Analog Infermupl[FIX]
Bi--Ouipuls[Fid

--Quipuls Miscellaneaus[FIg
Hjl--—h'lnul FiltealF1x]

¢ Dulpul FillerFIx]
H--Digital FElar[Fix]

[E=5EEB 7|
Base parameters |
Module i 1
Hodait (0
Input addiess [SIB0

Dot aeldimss: [R0B0D
Diagrostic slliess | %M

Ceinank: |

Based on the configuration the user can find the following in the program environment:

56

all important system and error flags
Depending on the application and the application program, these flags must be processed and
evaluated. Access is made via their symbolic names.

The structure of the inputs and outputs
These can directly be designated symbolically (highly recommended!) in the window [PLC
Configuration] (— figure below) and are available in the whole project as [Global Variables].

| i PLC Configuration
E--CR0033 Configuration V01
E--inpulsiOulputs[FiX]

EF--Inputs[FIX]

E=%HoH ==

Base parertaters |

[/ 00 AT %1X0.0; BOOL, (* Bution START *) [CH]

B--Inpuls AnalogFix]
BhenMidnnle CreranliSn

—§] 101 AT 1X0.1: BOOL; (* Connector 1, Pin 35, Corment. [Bulion START
——[J] 102 AT %1X0.2; BOOL, (* Connector 1, Pin 54,

Channetld: 51
'] 103 AT %1X0.3: BOOL; (* Connector 1, Pin 35,
——{'§] 104 AT %iX0.4; BOOL; (* Connector 1, Pin 53, Caset
=[5 105 AT %IX0.5: BOOL; (* Connector 1, Pin 34, Size 1
—["§] 106 AT %1X0.6; BOOL; (* Connector 1, Pin 52,
i) 107 AT %1X0.7: BOOL; {* Connector 1, Pin 33, Dtk Keotas S0

——["}] 108 AT %1X0.8: BOOL, {* Connector 1, Pin 24,
i~~'§] 109 AT %1X0.8; BOOL; (* Connector 1. Pin 41,
—["¥] 110 AT %1X0.10: BOOL, (* Connector 1, Pin 23
=[] 111 AT %IX0.11: BOOL; (* Connector 1. Pin 4¢
—["§] 112 AT $1X0.12: BOOL; (* Connector 1. Pin 22
-] 113 AT %IX0.13; BOOL: (* Connector 1, Pin 3¢
¥ 114 AT %IX0.14: BOOL: (* Connector 1, Pin 21
[115 AT %1X0.15; BOOL: (* Connector 1, Pin 3¢

ExtendedController CR0232

4.2.2 Setup the programming system via templates
28325
ifm offers ready-to-use templates (program templates), by means of which the programming system

can be set up quickly, easily and completely.
28325

(£] When installing the ecomatmobile DVD "Software, tools and documentation”, projects with
templates have been stored in the program directory of your PC:
..\ifm electronic\CoDeSys V..\Projects\Template_DVD_V..

» Open the requested template in CODESYS via:
[File] > [New from template...]

> CODESYS creates a new project which shows the basic program structure. It is strongly
recommended to follow the shown procedure.

4.3 Function configuration in general

28350

43.1 Configuration of the inputs and outputs (default setting)

28792
e Allinputs and outputs are in the binary mode (plus switching!) when delivered.
e The diagnostic function is not active.
e The overload protection is active.

432 System variables

2252
13519
28390
All system variables (— chapter System flags (— p. 215)) have defined addresses which cannot be
shifted.
> Toindicate and process a watchdog error or causes of a new start the system variable
LAST_RESET is set.

> Indication of the selected I/O configuration via mode bytes

57

ExtendedController CR0232

4.4 Function configuration of the inputs and outputs

Content

(O0]1ilo U1 =T] o]0 £ PP PP PPP 59
(O0] 1o U1 = 0] U110 18| PP PP PPPRP PP 62

For some devices of the ecomatmobile controller family, additional diagnostic functions can be
activated for the inputs and outputs. So, the corresponding input and output signal can be monitored
and the application program can react in case of a fault.
Depending on the input and output, certain marginal conditions must be taken into account when
using the diagnosis:
» It must be checked by means of the data sheet if the device used has the described input and
output groups (— data sheet).
e Constants are predefined (e.g. IN_DIGITAL_H) in the device libraries (ifm_CR@232_Vxxyyzz.LIB
) for the configuration of the inputs and outputs.
For details — Possible operating modes inputs/outputs (— p. 233).

Only ExtendedController:
The designations of the inputs and outputs in the controller's second half are indicated by an
appended _E.

58

ExtendedController CR0232

44.1 Configure inputs

Content
Safety iNStructions about REEA FEIAYScooiuiiiiiiiiii et 59
= AT 0] 01U £ PSP P PP PP PPN 60
Configure the software filters of the INPULSooiiiiiiiec e e e e e 61
Configure the hardWare filLEIceie oo e e e e e s st e e e e e e e e e s annraeeeaaaeaas 61
28784
Valid operating modes — chapter Possible operating modes inputs/outputs (— p. 233)
Safety instructions about Reed relays
28354
For use of non-electronic switches please note the following:
28354

() contacts of Reed relays may be clogged (reversibly) if connected to the device inputs without
series resistor.

» Remedy: Install a series resistor for the Reed relay:
Series resistor = max. input voltage / permissible current in the Reed relay
Example: 32 V /500 mA = 64 Ohm

» The series resistor must not exceed 5 % of the input resistance RE of the device input (— data
sheet). Otherwise, the signal will not be detected as TRUE.
Example:
RE =3 000 Ohm
= max. series resistor = 150 Ohm

59

ExtendedController CR0232

Fast inputs
2193

The devices dispose of fast counting/pulse inputs for an input frequency up to 30 kHz (— data sheet).

The input resistance of the fast inputs switches automatically depending on the applied mode or
function block:

Input resistance for mode / FB
3.2 kohms (standard) FAST_COUNT, FREQUENCY, INC_ENCODER, PERIOD and similar FBs
50.7 kohms input with fixed switching level 32 V

23900

The internal resistance Ri of the signal source must be substantially lower than the input
resistance Rinput Of the used input (principle voltage alignment).

Otherwise the input signal of the fast input can be distort (low-pass characteristic).

14677

0) If, for example, mechanical switches are connected to these inputs, there may be faulty signals in
the controller due to contact bouncing.
P If necessary, filter these "false signals" using the filters Ixx_DFILTER.

(— chapter System flags (— p. 215)) (not available for all inputs)

Appropriate function blocks are e.g.:

FAST_COUNT (— p. 138) Counter block for fast input pulses

FREQUENCY (— p. 140) Measures the frequency of the signal arriving at the selected channel
FREQUENCY_PERIOD (— p. 142) Measures the frequency and the cycle period (cycle time) in [us] at the indicated channel
INC_ENCODER (— p. 144) Up/down counter function for the evaluation of encoders

PERIOD (— p. 146) Measures the frequency and the cycle period (cycle time) in [us] at the indicated channel
PERIOD_RATIO (— p. 148) Measures the frequency and the cycle period (cycle time) in [us] during the indicated periods at

the indicated channel. In addition, the mark-to-space ratio is indicated in [J%o].

PHASE (— p. 150) Reads a pair of channels with fast inputs and compares the phase position of the signals

(2] When using these units, the parameterised inputs and outputs are automatically configured, so the
programmer of the application does not have to do this.

60

ExtendedController CR0232

Configure the software filters of the inputs

6883
A software filter that filters the measured input voltage on the analogue inputs can be configured via
the system variables Ixx_FILTER. In case of a step response the filter behaves like a conventional
low-pass filter, the limit frequency is set by the value entered in the system variable. Values of 0...8 are
possible.
Table: limit frequency software low-pass filter on analogue input

IXx_FILTER Filter frequency [Hz] Signal rise time Remarks
0 Filter deactivated
1 390 1ms
2 145 2.5ms
3 68 5ms
4 34 10 ms Recommended, default setting
5 17 21 ms
6 8 42 ms
7 4 84 ms
8 2 169 ms
>9 34 10 ms — Default setting

12969

@ After changing the filter setting, the value of this input or output is not output correctly at once. Only
after the signal rise time (— table) will the value be correct again.

[E The signal rise time is the time taken by a signal at the output of the filter to rise from 10 % to 90 % of the final value if an
input step is applied. The signal fall time is the time taken by a signal to decrease from 90 % to 10 %.

Configure the hardware filter

9154
A digital hardware filter can be configured on the fast counter and pulse inputs via the system variable
IXx_DFILTER. The value in us (max. 100 000) indicates how long a binary level must be applied
without interruption before it is adopted. Default = 0 ps.

@ The level change of the input signal is delayed by the value set in the filter.

The filter has an effect on the detected signals only for the following function blocks:

FAST_COUNT (— p. 138) Counter block for fast input pulses

FREQUENCY (— p. 140) Measures the frequency of the signal arriving at the selected channel
FREQUENCY_PERIOD (— p. 142) Measures the frequency and the cycle period (cycle time) in [us] at the indicated channel
INC_ENCODER (— p. 144) Up/down counter function for the evaluation of encoders

PERIOD (— p. 146) Measures the frequency and the cycle period (cycle time) in [us] at the indicated channel
PERIOD_RATIO (— p. 148) Measures the frequency and the cycle period (cycle time) in [us] during the indicated periods at

the indicated channel. In addition, the mark-to-space ratio is indicated in [Jo].

Digital filters are not available for all fast counter and pulse inputs.

61

ExtendedController CR0232

4.4.2 Configure outputs

Content

Allowable configurations for Q00_MODE...Q15 MODEccciiiiuiiiiiiiee it 62
Allowable configurations for Q00_MODE_E...Q15 MODE_Eccccoiiiiiiiiiiiiiiieee e 62
Allowable configurations for Q16_MODE_E...Q31 MODE_Ecccccceviiiiiiiiiiiiieee e cceiieee e 63
Configure the software filters of the OULPULScciiiiiiii e e e 63
BiNary and PWIM OUEPULSuuueiiieieeiiiiiiieei e e e e e e se st e e e e e e s atataeeeeaeassaantasaseaaaeaeaanntasaeeeaeesaannnnsnneeeaeesannnnes 64

Valid operating modes — chapter Possible operating modes inputs/outputs (— p. 233)

Allowable configurations for Q00_MODE...Q15 MODE

6903

Overload Diagnosis - 4A7) 2A LS HS Config. value
7 6 5 4 3 2 1 0 [hex] [dec]
0 0 0 0 1 0 0 1 09 9
0 0 0 1 0 0 0 1 11 17
0 1 0 0 1 0 0 1 49 73
0 1 0 1 0 0 0 1 51 81
1 0 0 0 1 0 0 1 89 137
1 0 0 1 0 0 0 1 91 145
1 1 0 0 1 0 0 1 Cc9 201
1 1 0 1 0 0 0 1 D1 209
0 0 0 0 0 0 1 0 02 2

= this configuration value is default

1) only possible for outputs Q00...Q03 + Q08...Q11

Allowable configurations for Q0O0_MODE_E...Q15 MODE_E

6904

Overload Diagnosis -- 4A7) 2A LS HS Config. value
7 6 5 4 5 2 1 0 [hex] [dec]
0 0 0 0 1 0 0 1 09 9
0 0 0 1 0 0 0 1 11 17
0 1 0 0 1 0 0 1 49 73
0 1 0 1 0 0 0 1 51 81
1 0 0 0 1 0 0 1 89 137
1 0 0 1 0 0 0 1 91 145
1 1 0 0 1 0 0 1 Cc9 201
1 1 0 1 0 0 0 1 D1 209
0 0 0 0 0 0 1 0 02 2

= this configuration value is default
1) only possible for outputs QO0_E...Q03_E + Q08_E...Q11_E

62

ExtendedController CR0232

Allowable configurations for Q16 _MODE_E...Q31_MODE_E

17190

Overload Diagnosis - 4A7) 2A - LS HS Config. value
7 6 5 4 3 2 1 0 [hex] [dec]
0 0 0 0 X (0) 0 0 1 01 1
0 1 0 0 X (0) 0 0 1 41 65
1) 0 0 0 X (0) 0 0 1 81 129

= this configuration value is default

1) here not possible

Configure the software filters of the outputs
6882

Via the system variables Qxx_FILTER a software filter which filters the measured current values can
be configured.

e In case of a step response the filter behaves like a conventional low-pass filter, the limit frequency
is set by the value entered in the system variable.

e During current measuring the filter setting affects the diagnosis time.

Table: Limit frequency software low-pass filter for the current measurement on the output

Qxx_FILTER Filter frequency [Hz] Signal rise time Remarks

0 Filter deactivated

1 580 0.6 ms

2 220 1.6 ms

3 102 3.5ms

4 51 7 ms Recommended, default setting
5 25 14 ms

6 12 28 ms

7 6 56 ms

8 3 112 ms

>9 51 7 ms — Default setting

12969

@ After changing the filter setting, the value of this input or output is not output correctly at once. Only
after the signal rise time (— table) will the value be correct again.

[E The signal rise time is the time taken by a signal at the output of the filter to rise from 10 % to 90 % of the final value if an
input step is applied. The signal fall time is the time taken by a signal to decrease from 90 % to 10 %.

63

ExtendedController CR0232

Binary and PWM outputs
2423

The following operating modes are possible for the device outputs (— data sheet):

« binary output, plus switching (BH) with/without diagnostic function

* binary output, plus switching (BH), partly also minus switching (BL)

* PWM output, plus switching (BH) without diagnostic function

* PWM output pair H-bridge without diagnostic function

PWM outputs can be operated with and without current control function.

Current-controlled PWM outputs are mainly used for triggering proportional hydraulic functions.

() The medium current across a PWM signal can only be correctly determined via the FB

OUTPUT_CURRENT if the current flowing in the switched-on state is within the measuring range.
33974

A WARNING

Property damage or bodily injury possible due to malfunctions!

The following applies for outputs in PWM mode:

« there is no diagnostic function

* no ERROR flags are set

* the overload protection OUT_OVERLOAD_PROTECTION is NOT active

33974

|J(+) (+)
!#I(L)
—D—' Qn Qn = pin output n Qn = pin output n
o0 : o (L) = load —D—' an (L) = load
¢]-

¢

Basic circuit of output plus switching (BH) Basic circuit of output minus switching (BL)
for positive output signal for negative output signal
33974

Dangerous restart possible!
Risk of personal injury! Risk of material damage to the machine/plant!

If in case of a fault an output is switched off via the hardware, the logic state generated by the
application program is not changed.

» Remedy:
* Reset the output logic in the application program!
* Remove the fault!
* Reset the outputs depending on the situation.

14931

® NOTE

» Do NOT reconfigure the outputs during operation!
It is not allowed to change from PWM output to binary output.

> Otherwise the outputs may react unpredictably.

64

ExtendedController CR0232

Availability of PWM

Device

CRn032, CRO033
CRn232, CR0233

Current control with PWM (= PWMi)

Number of available
PWM outputs

16
32

of which
current-controlled
(PWMi)

16
32

12058

PWM frequency
[Hz]

20...250
20...250

13829

Current measurement of the coil current can be carried out via the current measurement channels
integrated in the controller. This allows for example that the current can be re-adjusted if the coil heats

up. Thus the hydraulic relationships in the system remain the same.

In principle, the current-controlled outputs are protected against short circuit.

65

ExtendedController CR0232

4.5 Variables

Content
R LEy ez 1 A VZ= V=1 o] (ST 66
LY 0] £z 1A= o] [67

In this chapter you will learn more about how to handle variables.

28318
The device supports the following types of variables:
Variable Declaration place Validity area Memory behaviour
local in the declaration part of the function | Only valid in the function element volatile
local retain element (POU) (POU) where it was configured. nonvolatile
global In [Resources] > [Global Variables] > | Valid in all function elements of this volatile
global retain [Globale_Variables]: CODESYS project. nonvolatile
Network Values are available to all CODESYS | Volatile
In [Resources] > [Global Variables] > | projects in the whole network if the
declaration list variable is contained in its declaration
Network retain lists. nonvolatile
! — CODESYS programming manual
45.1 Retain variables
15454
Variables declared as RETAIN generate remanent data. Retain variables keep the values saved in
them when the device is switched on/off or when an online reset is made.
() The contents of the retain variables are lost if the device is in the STOP state during power-off!
32425

Typical applications for retain variables are for example:

* operating hours which are counted up and retained while the machine is in operation,
* position values of incremental encoders,

* preset values entered in the monitor,

* machine parameters,

i.e. all variables whose values must not get lost when the device is switched off.

All variable types, also complex structures (e.g. timers), can be declared as retain.
» To do so, activate the control field [RETAIN] in the variable declaration (— window).

3 lame:
|g\f:n =] [‘%ahe_'l If/’\;\o [=]]
Symbal it ol Vabio Addess [
[Giesaevasten; 7] |] I~ CONSTANT
Comment: |Caunter operation cycle FEETA'N
I | PERSISTENT

66

ExtendedController CR0232

45.2 Network variables

28528

Global network variables are used for data exchange between controllers in the network. The values
of global network variables are available to all CODESYS projects in the whole network if the variables
are contained in their declaration lists.

» Integrate the following library/libraries into the CODESYS project:
= 3S_CANopenNetVar.lib

67

ExtendedController CR0232

5 ifm function elements

Content

ifm libraries for the deViCe CRO232oouueii it e e et e e e e e s e e e aab s eeeaessssbaa e seaeseesenes 69
ifm function elements for the deviCe CRO232..........ouuuiiiiiiiiieee e e e e et e e e s e e eaab e e e eeeseesanes 74

28394

All CODESYS function elements (FBs, PRGs, FUNSs) are stored in libraries. Below you will find a list of
all the ifm libraries you can use with this device.

This is followed by a description of the function elements, sorted by topic.

68

ExtendedController CR0232

51 ifm libraries for the device CR0232

Content

Library ifm_CR0232_V010003.LIB

Library ifm_CR0232_CANopenxMaster _VXXYYZZ.LIBccceiiiiiiiiiiiiiie e
Library ifm_CR0232_CANOPENXSIAVE_VXXYYZZ.LIBcoiiiiiiiiiiiiiiiieiiiiiee ittt
Library ifm_CR0232_J1939_VXXYYZZ.LIBcoiiiiiiiieiiieiee et
Library ifm_hydraulic_32bit VXXYYZZ.LIBcoo i e et ee e e e e e s e e e e e e s e sananaeeeeeeesannnnes

511

Library ifm_CR0232_V010003.LIB

18429

This is the device library.This ifm library contains the following function blocks:

Function element

CANX (= p. 76)

CANX_BAUDRATE (— p. 77)

CANxX_BUSLOAD (— p. 78)

CANX_DOWNLOADID (- p. 79)

CANx_ERRORHANDLER (— p. 80)

CANxX_RECEIVE (— p. 81)

CANx_SDO_READ (— p. 103)

CANx_SDO_WRITE (— p. 105)

CANX_TRANSMIT (- p. 83)

CHECK_DATA (— p. 204)

DELAY (— p. 178)
FAST_COUNT (= p. 138)
FAST_COUNT_E
FLASHREAD (— p. 196)
FLASHWRITE (— p. 197)
FRAMREAD (— p. 199)

FRAMWRITE (— p. 200)

FREQUENCY (- p. 140)
FREQUENCY_E
FREQUENCY_PERIOD (— p. 142)
FREQUENCY_PERIOD_E

Short description

Initialises CAN interface x
x = 1...n = number of the CAN interface (depending on the device, — data sheet)

Sets the transmission rate for the bus participant on CAN interface x
x = 1...n = number of the CAN interface (depending on the device, — data sheet)

Determines the current bus load on CAN interface x and counts the occurred error frames
x = 1...n = number of the CAN interface (depending on the device, — data sheet)

Sets the download identifier for CAN interface x
x = 1...n = number of the CAN interface (depending on the device, — data sheet)

Executes a "manual” bus recovery on CAN interface x
x = 1...n = number of the CAN interface (depending on the device, — data sheet)

CAN interface x: Configures a data receive object and reads out the receive buffer of the data
object
x = 1...n = number of the CAN interface (depending on the device, — data sheet)

CAN interface x: Reads the SDO with the indicated indices from the node
x = 1...n = number of the CAN interface (depending on the device, — data sheet)

CAN interface x: writes the SDO with the indicated indices to the node
x = 1...n = number of the CAN interface (depending on the device, — data sheet)

Transfers a CAN data object (message) to the CAN interface x for transmission at each call
x = 1...n = number of the CAN interface (depending on the device, — data sheet)

Generates a checksum (CRC) for a configurable memory area and checks the data of the
memory area for undesired changes

Delays the output of the input value by the time T (dead-time element)
Counter block for fast input pulses

=FAST_COUNT (— p. 138) for the extended side

transfers different data types directly from the flash memory to the RAM
writes different data types directly into the flash memory

transfers different data types directly from the FRAM memory to the RAM
FRAM indicates here all kinds of non-volatile and fast memories.

writes different data types directly into the FRAM memory
FRAM indicates here all kinds of non-volatile and fast memories.

Measures the frequency of the signal arriving at the selected channel
= FREQUENCY (— p. 140) for the extended side
Measures the frequency and the cycle period (cycle time) in [us] at the indicated channel

= FREQUENCY_PERIOD (— p. 142) for the extended side

69

ExtendedController CR0232

Function element

GET_IDENTITY (— p. 206)

GET_IDENTITY_EIOS (— p. 207)

INC_ENCODER (— p. 144)
INC_ENCODER_E
INPUT_ANALOG (— p. 130)

INPUT_ANALOG_E

MEMCPY (— p. 201)
MEMORY_RETAIN_PARAM (— p. 194)
MEMSET (— p. 202)

NORM (— p. 133)

NORM_DINT (— p. 135)

NORM_REAL (- p. 136)
OUTPUT_BRIDGE (— p. 153)
OUTPUT_BRIDGE_E
OUTPUT_CURRENT (— p. 156)
OUTPUT_CURRENT_E
OUTPUT_CURRENT_CONTROL (- p. 157)
OUTPUT_CURRENT_CONTROL_E
PERIOD (— p. 146)

PERIOD_E

PERIOD_RATIO (— p. 148)

PERIOD_RATIO_E
PHASE (— p. 150)
PHASE_E

PID1 (- p. 179)

PID2 (- p. 181)
PT1(—p.183)
PWM1000 (— p. 160)

PWM1000_E
SERIAL_PENDING (— p. 120)
SERIAL_RX (— p. 121)
SERIAL_SETUP (— p. 122)
SERIAL_TX (— p. 123)
SET_DEBUG (— p. 208)
SET_IDENTITY (— p. 209)

70

Short description

Reads the specific identifications stored in the device:

+ hardware name and hardware version of the device

+ name of the runtime system in the device

+ version and revision no. of the runtime system in the device

+ name of the application (has previously been saved by means of SET_IDENTITY (—
p. 209))

+ serial number of the device

FB reads the specific identifications stored in the device for the extended side:
+ name of the extended 10 system (EIOS) in the device
« version and revision no. of the extended 10 system (EIOS) in the device

Up/down counter function for the evaluation of encoders
=INC_ENCODER (— p. 144) for the extended side

analogue input channel: alternatively measurement of ...
« current
+ voltage

= INPUT_ANALOG (— p. 130) for the extended side

Writes and reads different data types directly in the memory

Determines the remanent data behaviour for various events

Writes in a specified data area

Normalises a value [WORD] within defined limits to a value with new limits
Normalises a value [DINT] within defined limits to a value with new limits
Normalises a value [REAL] within defined limits to a value with new limits
H-bridge on a PWM channel pair

= OUTPUT_BRIDGE (— p. 153) for the extended side

Measures the current (average via dither period) on an output channel

= OUTPUT_CURRENT (— p. 156) for the extended side

Current controller for a PWMi output channel

= OUTPUT_CURRENT_CONTROL (— p. 157) for the extended side
Measures the frequency and the cycle period (cycle time) in [us] at the indicated channel

= PERIOD (— p. 146) for the extended side

Measures the frequency and the cycle period (cycle time) in [us] during the indicated periods at

the indicated channel. In addition, the mark-to-space ratio is indicated in [%o).

= PERIOD_RATIO (— p. 148) for the extended side

Reads a pair of channels with fast inputs and compares the phase position of the signals
= PHASE (— p. 150) for the extended side

PID controller

PID controller

Controlled system with first-order delay

Initialises and configures a PWM-capable output channel
the mark-to-space ratio can be indicated in steps of 1 %o

=PWM1000 (— p. 160) for the extended side

Determines the number of data bytes stored in the serial receive buffer

Reads a received data byte from the serial receive buffer at each call

Initialises the serial RS232 interface

Transmits one data byte via the serial RS232 interface

organises the DEBUG mode or the monitoring mode (depending on the TEST input)

Sets an application-specific program identification

ExtendedController CR0232

Function element Short description

SET_INTERRUPT_I (— p. 125) Conditional execution of a program part after an interrupt request via a defined input channel
SET_INTERRUPT_XMS (— p. 127) Conditional execution of a program part at an interval of x milliseconds
SET_PASSWORD (— p. 210) Sets a user password for access control to program and memory upload

SOFTRESET (— p. 185) leads to a complete reboot of the device

TEMPERATURE (— p. 190) Reads the current temperature in the device

TIMER_READ (— p. 187) Reads out the current system time in [ms]

Max. value = 49d 17h 2min 47s 295ms

TIMER_READ_US (— p. 188) Reads out the current system time in [us]
Max. value = 1h 11min 34s 967ms 295us

51.2 Library ifm_CR0232_CANopenxMaster_Vxxyyzz.LIB

x = 1...4 = number of the CAN interface
This library contains function blocks for operation of the device as a CANopen master.

This ifm library contains the following function blocks:
Function element Short description

CANx_MASTER_EMCY_HANDLER (— p. 85) | Handles the device-specific error status of the CANopen master on CAN interface x
x = 1...n = number of the CAN interface (depending on the device, — data sheet)

CANXx_MASTER_SEND_EMERGENCY (— Sends application-specific error status of the CANopen master on CAN interface x
p. 86) x = 1...n = number of the CAN interface (depending on the device, — data sheet)

CANx_MASTER_STATUS (— p. 88) Status indication on CAN interface x of the device used as CANopen master
x = 1...n = number of the CAN interface (depending on the device, — data sheet)

13707

71

ExtendedController CR0232

51.3 Library ifm_CR0232_CANopenxSlave_Vxxyyzz.LIB

13709
X = 1...4 = number of the CAN interface
This library contains function blocks for operation of the device as a CANopen slave.
This ifm library contains the following function blocks:
Function element Short description
CANx_SLAVE_EMCY_HANDLER (— p. 95) Handles the device-specific error status of the CANopen slave on CAN interface x:
« error register (index 0x1001) and
« error field (index 0x1003) of the CANopen object directory
x = 1...n = number of the CAN interface (depending on the device, — data sheet)
CANx_SLAVE_NODEID (— p. 96) Enables setting of the node ID of a CANopen slave on CAN interface x at runtime of the
application program
x = 1...n = number of the CAN interface (depending on the device, — data sheet)
CANx_SLAVE_SEND_EMERGENCY (— Sends application-specific error status of the CANopen slave on CAN interface x
p.97) x = 1...n = number of the CAN interface (depending on the device, — data sheet)
CANx_SLAVE_SET_PREOP (—p. 99) Switches the operating mode of this CANopen slave from "OPERATIONAL" to "OPERATIONAL"
on CAN interface x
x = 1...n = number of the CAN interface (depending on the device, — data sheet)
CANx_SLAVE_STATUS (— p. 100) Shows the status of the device used as CANopen slave on CAN interface x
x = 1...n = number of the CAN interface (depending on the device, — data sheet)
514 Library ifm_CR0232_J1939 Vxxyyzz.LIB
13711

This library contains function blocks for engine control.

This ifm library contains the following function blocks:

Function element Short description
J1939 x (— p. 108) CAN interface x: protocol handler for the communication profile SAE J1939
x = 1...n = number of the CAN interface (depending on the device, — data sheet)
J1939_x_GLOBAL_REQUEST (— p. 109) CAN interface x: handles global requesting and receipt of data from the J1939 network
participants

x = 1...n = number of the CAN interface (depending on the device, — data sheet)

J1939_x_RECEIVE (— p. 111) CAN interface x: Receives a single message or a message block
x = 1...n = number of the CAN interface (depending on the device, — data sheet)

J1939_x_RESPONSE (— p. 113) CAN interface x: handles the automatic response to a request message
x = 1...n = number of the CAN interface (depending on the device, — data sheet)

J1939_x_SPECIFIC_REQUEST (— p. 115) CAN interface x: automatic requesting of individual messages from a specific J1939 network
participant
x = 1...n = number of the CAN interface (depending on the device, — data sheet)

J1939_x_TRANSMIT (— p. 117) CAN interface x: sends individual messages or message blocks
x = 1...n = number of the CAN interface (depending on the device, — data sheet)

72

ExtendedController CR0232

515 Library ifm_hydraulic_32bit_Vxxyyzz.LIB

13729

This library contains function blocks for hydraulic controls.

This ifm library contains the following function blocks:

Function element

CONTROL_OCC (> p. 163)

JOYSTICK_O (— p. 165)

JOYSTICK_1 (— p. 168)
JOYSTICK_2 (— p. 172)

NORM_HYDRAULIC (— p. 175)

Short description

OCC = Output Current Control
Scales the input value [WORD] to an indicated current range

Scales signals [INT] from a joystick to clearly defined characteristic curves, standardised to 0...
1000

Scales signals [INT] from a joystick D standardised to 0... 1000

Scales signals [INT] from a joystick to a configurable characteristic curve; free selection of the
standardisation

Normalises a value [DINT] within defined limits to a value with new limits

73

ExtendedController CR0232

5.2 ifm function elements for the device CR0232

Content
FUNCtion elementsS: CAN TAYET 2. ... oottt s e e e st e e s nne e e e s annn e e e s annneee s 75
Function elements: CANOPEN MASTETciiiuiiiiiiiiiee et ee ettt e et e s e e s aase e e e s aaneeeesannneeesannneeens 84
Function elements: CANOPEN SIAVEoiiiiiiiie it e s annneee s 94
Function elements: CANOPEN SDOSuuuiiiiiiiiiiiiiiieie e e e e e secee e e e e e e ssrataeeeeaeessaataraeeeaaeessaanrnrareeaeeeen 102
FuNnction elements: SAE J1939uuiiiiiiiieiiiiie ettt sttt e e st s s e e e e e e e nnbas 107
Function elements: Serial INTEITACE............ii i 119
Function elements: Optimising the PLC cycle via processing interruptsccccvvveeeeeeeeiiiivnnneeeeennn, 124
Function elements: processing iNPUL VAIUEScuviiieiiiiiiiiiiiiieee et ee e e e e sseee e e e e e e snnrnaaneeaee e s 129
Function elements: adapting analogue VAIUEScooeiiiiiiiiiiiiiiee e e e e e e eaneaneeaee e 132
Function elements: counter functions for frequency and period measurementcccceeevivieeeennnne. 137
Function elements: PWM fUNCHONSuuiiiiiiiii it e e e e e e e eeaeee e s 152
Function elements: hydrauliC CONIOL...........ooiuuuiiiiiiii e 162
FUNCtion elemENntS: CONTIOIIEISoooiiiiiiieeie et e et e e e e e e et e e e e e e e snnbnreeeeaeeeeas 177
Function elements: SOftWAIE FESELuiiiiiiie e e e e e e e e e s nnbe e eeeaeeeeas 184
Function elements: measuring / SEttiNg Of tIMeoii i 186
Function elements: deViCe tEMPEIALUIEuuuuueei s 189
Function elements: saving, reading and converting data in the memory..........cccccooeeiieiiiiiiiicieceeeeeeennnn 191
Function elements: data access and data Check ... 203
13988
28309

Here you will find the description of the ifm function elements suitable for this device, sorted by topic.

74

ExtendedController CR0232

521 Function elements: CAN layer 2

Content

(O AN N) PPN 76
CANX _BAUDRATEo, 77
(@7 NN D 21U] I Y I S 78
CANX_DOWNLOADID ...ceiieiieiitiiee et e e e e e s et e e et e s aeeeaee et e asabaaeeaeaeesaasstaaeeaaeaesaannntaneeeeeessnansnrnneeaeeean 79
CANX_ERRORHANDLERuutiiiiiiiee ettt e e e e e s e e e e e e e e e s e san e e e e e e e e saanantaeeeeaeeeaaannnnnneeaaaaaan 80
L@ NN DG = (O = Y S 81
L@ NN D I ¥ 2N AN 1] 1 S 83

Here, the CAN function blocks (layer 2) for use in the application program are described.

75

ExtendedController CR0232

CANXx

x = 1...n = number of the CAN interface (depending on the device, — data sheet)

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

CANXx

INIT
EXTENDED_MODE
DOWNLOAD_ID
BAUDRATE

Description

CANX initialises the xth CAN interface
x = 1...n = number of the CAN interface (depending on the device, — data sheet).

The download ID must be different for every interface.
The baud rates of the individual CANx can be set to different values.
» The input INIT is only set for one cycle during reboot or restart of the interface!

2159

2162

®a change of the download ID and/or baud rate only becomes valid after power off/on.

If the unit is not executed, the interface works with 11-bit identifiers.
Parameters of the inputs

Parameter Data type Description

INIT BOOL TRUE (in the 1st cycle):
Function block is initialised

FALSE: during further processing of the program

EXTENDED_MODE BOOL := FALSE TRUE: identifier of the CAN interface operates with 29 bits
FALSE: identifier of the CAN interface operates with 11 bits

DOWNLOAD_ID BYTE Download ID of CAN interface x

x = 1...n = number of the CAN interface (depending on the device,

— data sheet)
valid =1...127
preset = 127 - (x-1)

BAUDRATE WORD := 125 Baud rate [kbits/s]
valid = 20, 50, 100, 125, 250, 500, 1000

76

2163

ExtendedController CR0232

CANx_BAUDRATE

11834
x = 1...n = number of the CAN interface (depending on the device, — data sheet)

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

CANx_BAUDRATE

= ENABLE
=1 BAUDRATE

Description
11839

CANx_BAUDRATE sets the transmission rate for the bus participant.

The function block is used to set the transmission rate for the device. To do so, the corresponding
value in Kbits/s is entered at the input BAUDRATE.

() The new value will become effective on RESET (voltage OFF/ON or soft reset).

Parameters of the inputs
27644

Parameter Data type Description
ENABLE BOOL TRUE (in the 1st cycle):
Adopt and activate parameters
else: this function is not executed
BAUDRATE WORD := 125 Baud rate [kbits/s]

valid = 20, 50, 100, 125, 250, 500, 1000

77

ExtendedController CR0232

CANx_BUSLOAD

2178
x = 1...n = number of the CAN interface (depending on the device, — data sheet)

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

CANx_BUSLOAD
—ENABLE ERRORFRAMES |—
—{INIT BUSLOAD |—
—] RESET

— PERIOD

Description

2180
Determines the current bus load on the CAN bus and counts the occurred error frames.
CANx_BUSLOAD determines the bus load via the number and length of the messages transferred via

the CAN bus during the time indicated in PERIOD by taking the current baud rate into account. The
value BUSLOAD is updated after the time indicated in PERIOD has elapsed.

If the bit RESET is permanently FALSE, the number of the error frames occurred since the last
RESET is indicated.

® NOTE

If the communication on the CAN bus is carried out via the CANopen protocol, it is useful to set the
value of PERIOD to the duration of the SYNC cycle.

The measurement period is not synchronised with the CANopen SYNC cycle.

Parameters of the inputs
2181

Parameter Data type Description

ENABLE BOOL TRUE: execute this function element

FALSE: unitis not executed
> Function block inputs are not active
> Function block outputs are not specified

INIT BOOL TRUE (only for 1 cycle):
configuration of the measurement duration PERIOD

FALSE: during further processing of the program
RESET BOOL TRUE: Set ERRORFRAME to "0"

FALSE: function element is not executed

PERIOD WORD Time in [ms] to determine the bus load
allowed = 20...1 000 ms

Parameters of the outputs
2182

Parameter Data type Description
ERRORFRAMES WORD Number of error frames occurred on the CAN bus since the last reset
BUSLOAD BYTE Current bus load in [%]

78

ExtendedController CR0232

CANx_DOWNLOADID

11841
= CANx Download-ID

x = 1...n = number of the CAN interface (depending on the device, — data sheet)

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

CANx_DOWNLOADID
ENABLE

Description
11846

CANx_DOWNLOADID sets the download identifier for the CAN interface x.

The function block can be used to set the communication identifier for program download and
debugging. The new value is entered when the input ENABLE is set to TRUE.

@ The new value will become effective on RESET (voltage OFF/ON or soft reset).

Parameters of the inputs
27633

Parameter Data type Description
ENABLE BOOL TRUE (in the 1st cycle):
Adopt and activate parameters
else: this function is not executed
ID BYTE Set download ID of CAN interface x

x = 1...n = number of the CAN interface (depending on the device,
— data sheet)

allowed =1...127

preset = 127 - (x-1)

79

ExtendedController CR0232

CANx_ERRORHANDLER

2174
x = 1...n = number of the CAN interface (depending on the device, — data sheet)

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

CANx_ERRORHANDLER
=1 BUSOFF_RECOVER

Description

2329
13991

@ If the automatic bus recover function is to be used (default setting) the function
CANx_ERRORHANDLER must not be integrated and instanced in the program!

CANx_ERRORHANDLER executes a "manual” bus recovery on the CAN interface x.

» After a recognised CAN bus-off, call the function block for one cycle with BUSOFF_RECOVER =
TRUE to make sure that the controller can send and receive on the CAN bus again.

» Then reset the error bit CANXx_BUSOFF for this CAN interface in the application program.
> The CAN interface is operative again.

Parameters of the inputs
27647

Parameter Data type Description

BUSOFF_RECOVER BOOL TRUE (only 1 cycle):
> remedy 'bus off status
> reboot of the CAN interfacex

FALSE: function element is not executed

80

ExtendedController CR0232

CANx_RECEIVE

27450
x = 1...n = number of the CAN interface (depending on the device, — data sheet)

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

CANx_RECEIVE
—| CONFIG DATA |—
— CLEAR DLC |—
-—1I1D RTR p—
AVAILABLE —
OVERFLOW p—
Description

13338
CANx_RECEIVE configures a data receive object and reads the receive buffer of the data object.

» The FB must be called once for each data object during initialisation to inform the CAN controller
about the identifiers of the data objects.

» In the further program cycle CANx_RECEIVE is called for reading the corresponding receive
buffer, also repeatedly in case of long program cycles.

» Depending on the CAN interface max. 256 instances are possible for the FB CANx_RECEIVE.

» In the Standard Mode all 2048 IDs can be used simultaneously
In the Extended Mode only 256 (any) IDs can be used simultaneously.

» Each ID (Standard or Extended) can be allotted to only one FB instance.
For multiple use of an ID: the last instance called.

» Setin FB CANx if CANx_RECEIVE should receive normal or extended frames.

> If CANx_RECEIVE is configured for the reception of a normal frame, the frame with this ID will not
be transferred to a CANopen Stack (if available).

> If an ID is set outside the permissible range (depending on the setting in CANX), the function block
will not be executed.

» Evaluate the output AVAILABLE so that newly received data objects are read from the butter and
processed in time.
Receive buffer: max. 16 software buffers per identifier.
> Each call of the FB decrements the byte AVAILABLE by 1.
If AVAILABLE = 0, there is no data in the buffer.
» Evaluate the output OVERFLOW to detect an overflow of the data buffer.
If OVERFLOW = TRUE, at least 1 data object has been lost.

81

ExtendedController CR0232

Parameters of the inputs

Parameter

CONFIG

CLEAR

Parameters of the outputs

Parameter
DATA
DLC

RTR

AVAILABLE

OVERFLOW

82

Data type
BOOL

BOOL

DWORD

Data type
ARRAY [0..7] OF BYTE
BYTE

BOOL = FALSE

BYTE

BOOL

27658

Description
TRUE (in the 1st cycle):
configure data object
FALSE: during further processing of the program

TRUE: delete receive buffer
FALSE: function element is not executed
Number of the data object identifier:
normal frame (2" IDs):
0...2 047 = 0x0000 0000...0x0000 O7FF

extended Frame (22 IDs):
0...536 870 911 = 0x0000 0000...0x1FFF FFFF

28454

Description
received data, (1...8 bytes)

Number of the bytes of the CAN telegram read from the receive buffer
allowed: 0...8

Received message was a Remote Transmission Request
(wird hier nicht unterstiitzt)

Number of the CAN telegrams received but not yet read from the
receive buffer (before the FB is called).

Possible values = 0...16

0 = no valid data available

TRUE: Overflow of the data buffer = loss of data!
FALSE: Data buffer is without data loss

ExtendedController CR0232

CANX_TRANSMIT
27812
x = 1...n = number of the CAN interface (depending on the device, — data sheet)

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

CANx_TRANSMIT

ID RESULT |—
DLC
DATA
ENABLE

Description
2166

CANx_TRANSMIT transmits a CAN data object (message) to the CAN controller for transmission.
The FB is called for each data object in the program cycle, also repeatedly in case of long program

cycles. The programmer must ensure by evaluating the output RESULT that his transmit order was
accepted. Simplified it can be said that at 125 kbits/s one transmit order can be executed per 1 ms.

The execution of the FB can be temporarily blocked (ENABLE = FALSE) via the input ENABLE. So,
for example a bus overload can be prevented.
(£ To put it simply, at 125 kbits/s one transmit order can be executed per 1 ms.

Several data objects with the same or with different ID can be transmitted virtually at the same time if a
flag is assigned to each data object and controls the execution of the FB via the ENABLE input.

Transmit buffer: max. 16 software buffers and 1 hardware buffer for all identifiers together.

Parameters of the inputs
19813

Parameter Data type Description

ID DWORD Number of the data object identifier:
normal frame (2" IDs):
0...2 047 = 0x0000 0000...0x0000 07FF
extended Frame (22 IDs):
0...536 870 911 = 0x0000 0000...0x1FFF FFFF

DLC BYTE Number of bytes to be transmitted from the DATA array
allowed: 0...8

DATA ARRAY [0..7] OF BYTE data to be sent (1...8 bytes)

ENABLE BOOL TRUE: execute this function element

FALSE: unitis not executed
> Function block inputs are not active
> Function block outputs are not specified

Parameters of the outputs
2168
Parameter Data type Description

RESULT BOOL TRUE (only for 1 cycle):
Function block accepted transmit order

FALSE: Transmit order was not accepted

83

ExtendedController CR0232

5.2.2 Function elements: CANopen master

Content

CANX_MASTER _EMCY _HANDLER ..o 85
CANX_MASTER_SEND EMERGENCY ...t 86
CANX_MASTER _STATUS ... ittt e e s e s e e e e e et e et eeeaeeesaasntaaeeeaeeesaansntaeeeeaeeeaaannrnneeeaanaas 88

ifm electronic provides a number of FBs for the CANopen master which will be explained below.

84

ExtendedController CR0232

CANx_MASTER_EMCY_HANDLER
2006
x = 1...n = number of the CAN interface (depending on the device, — data sheet)

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_CANopenxMaster_Vxxyyzz.LIB

Symbol in CODESYS:

CANx_MASTER_EMCY_HANDLER

= CLEAR_ERROR_FIELD ERROR_REGISTER [—
ERROR_FIELD p—

Description
27782

CANx_MASTER_EMCY_HANDLER manages the device-specific error status of the master. The FB
must be called in the following cases:

e the error status is to be transmitted to the network and
e the error messages of the application are to be stored in the object directory.

The current values from the error register (index 0x1001/01) and error field (index 0x1003/0-5) of the
CANopen object directory can be read via the FB.

0) If application-specific error messages are to be stored in the object directory,
CANx_MASTER_EMCY_HANDLER must be called after (repeatedly) calling
CANx_MASTER_SEND_EMERGENCY (— p. 86).

Parameters of the inputs
27655

Parameter Data type Description

CLEAR_ERROR _FIELD BOOL FALSE = TRUE (edge):
« transmit content of ERROR_FIELD to function block output
+ delete content of ERROR_FIELD in object directory

else: this function is not executed
Parameters of the outputs
27759
Parameter Data type Description
ERROR_REGISTER BYTE Shows content of OBV index 0x1001 (error register)
ERROR_FIELD ARRAY [0..5] OF WORD Shows the content of the OBV index 0x1003 (error field)

ERROR_FIELDI[0]: number of stored errors

ERROR_FIELDJ1...5]: Stored errors, the most recent error is shown on
index [1]

85

ExtendedController CR0232

CANx_MASTER_SEND_EMERGENCY

2012
x = 1...n = number of the CAN interface (depending on the device, — data sheet)

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_CANopenxMaster_Vxxyyzz.LIB

Symbol in CODESYS:

CANx_MASTER_SEND_EMERGENCY

ENABLE

ERROR

ERROR_CODE
ERROR_REGISTER
MANUFACTURER_ERROR_FIELD

Description

27783
CANx_MASTER_SEND_EMERGENCY transmits application-specific error states. The FB is called if
the error status is to be transmitted to other devices in the network.

@ If application-specific error messages are to be stored in the object directory,
CANx_MASTER_EMCY_HANDLER (— p. 85) must be called after (repeatedly) calling
CANx_MASTER_SEND_EMERGENCY.

Parameters of the inputs
27656

Parameter Data type Description

ENABLE BOOL TRUE: execute this function element
FALSE: unitis not executed
> Function block inputs are not active
> Function block outputs are not specified

ERROR BOOL Using this input, the information whether the error associated to the
configured error code is currently present is transmitted.
FALSE = TRUE (edge):
sends the next error code
if input was not TRUE in the last second

TRUE = FALSE (edge)
AND the fault is no longer indicated:
after a delay of approx. 1 s:
> zero error message is sent

else: this function is not executed

ERROR_CODE WORD The error code provides detailed information about the detected error.
The values should be entered according to the CANopen specification.

ERROR_REGISTER BYTE ERROR_REGISTER indicates the error type.
The value indicated here is linked by a bit-by-bit OR operation with all
the other error messages that are currently active. The resulting value
is written into the error register (index 100116/00) and transmitted with
the EMCY message.
The values should be entered according to the CANopen specification.

MANUFACTURER_ERROR_FIELD ARRAY [0..4] OF BYTE Here, up to 5 bytes of application-specific error information can be
entered. The format can be freely selected.

86

ExtendedController

CR0232

Example: CANX_MASTER_SEND_EMERGENCY

007
"""" SendEmoy
CAaMT_MASTER_SEMD_EMERGERCY
TRUE—ENAELE
|appIETO—ERROR
1G#FFO0-ERROR_CODE
16¥B1=ERROR_REGISTER
—MAHUFACTURER_ERROR_FIELD
jonnz2
SendEmoy2
CaM1_MASTER_SEMD_EMERGERMCY
TRUE=EMA/ELE
AppIENorlSERROR
|62FFO1—-ERROR_CODE
16281 —-ERROR_REGISTER
MAHUFACTURER_ERROR_FIELD
oon3
SendEmiya
CAMI_MASTER_SEND_EMERGEMNGY
IRUE—EMABLE
ApplErrori—-ERROR
1G#FFO2-ERROR_CODE
16%81=ERROR_REGISTER
MANUFACTURER_ERROR_FIELD
ANDiES
Emcy-landlar
CAM1_MASTER_EMCY_HAMDLER
ClearErrarFiald{CLEAR_ERROR_FIELD ERROR_REGISTER|——————Objekd1 001h
ERROR_FIELD {—Ohjaki1 0030

In this example 3 error messages will be generated subsequently:

1. ApplErrorl, Code = OxFFOO in the error register 0x81
2. ApplError2, Code = OxFFO1 in the error register Ox81
3. ApplError3, Code = OxFF02 in the error register 0x81

27890

CAN1_MASTER_EMCY_HANDLER sends the error messages to the error register "Object 0x1001" in
the error array "Object 0x1003".

87

ExtendedController CR0232

CANx_MASTER_STATUS

2692
x = 1...n = number of the CAN interface (depending on the device, — data sheet)

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_CANopenxMaster_Vxxyyzz.LIB

Symbol in CODESYS:

CANx_MASTER_STATUS
— GLOBAL_START NODE_ID |—
= CLEAR_RX_OVERFLOW_FLAG BAUDRATE |—
— CLEAR_RX_BUFFER NODE_STATE |—
— CLEAR_TX_OVERFLOW_FLAG SYNC |—
= CLEAR_TX_BUFFER RX_OVERFLOW |—
— CLEAR_OD_CHANGED_FLAG TX_OVERFLOW |—
— CLEAR_ERROR_CONTROL OD_CHANGED |—
— RESET_ALL_NODES ERROR_CONTROL |—
—] START_ALL_NODES GET_EMERGENCY |—
— NODE_STATE_SLAVE FIRST_NODE_INDEX |
— EMERGENCY_OBJECT_SLAVES LAST_NODE_INDEX |—

Description
27780

Status indication of the device used with CANopen.
CANXx_MASTER_STATUS shows the status of the device used as CANopen master. Further
possibilities:

* monitoring the network status

* monitoring the status of the connected slaves

* resetting or starting the slaves in the network.
The FB simplifies the use of the CODESYS CANopen master libraries. We urgently recommend to
carry out the evaluation of the network status and of the error messages via this FB.

88

ExtendedController CR0232

Parameters of the inputs

Parameter

GLOBAL_START

CLEAR_RX_OVERFLOW_FLAG

CLEAR_RX_BUFFER

CLEAR_TX_OVERFLOW_FLAG

CLEAR_TX_BUFFER

CLEAR_OD_CHANGED_FLAG

CLEAR_ERROR_CONTROL

RESET_ALL_NODES

START_ALL_NODES

NODE_STATE_SLAVES

EMERGENCY_OBJECT_SLAVES

Data type
BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

DWORD

DWORD

19861

Description

TRUE: All connected network participants (slaves)
are started simultaneously during network initialisation
(= state OPERATIONAL).

FALSE: The connected network participants are started
one after the other.

FALSE = TRUE (edge):

Clear error flag RX_OVERFLOW

else: this function is not executed

FALSE = TRUE (edge):

Delete data in the receive buffer

else: this function is not executed

FALSE = TRUE (edge):

Clear error flag TX_OVERFLOW

else: this function is not executed

FALSE = TRUE (edge):

Delete data in the transmit buffer

else: this function is not executed

FALSE = TRUE (edge):

Delete flag OD_CHANGED

else: this function is not executed

FALSE = TRUE (edge):

Delete the guard error list(ERROR_CONTROL)

else: this function is not executed

FALSE = TRUE (edge):

All connected network participants (slaves)
are reset via NMT command

else: this function is not executed
FALSE = TRUE (edge):

All connected network participants (slaves)
are started via NMT command

else: this function is not executed

Pointer address to a array [0.. MAX_NODEINDEX] of
CANx_NODE_STATE

The status information of the slaves in the CANopen network is to be
written into this array. The behaviour of the slaves can be controlled by

means of access to certainly values.

MAX_NODEINDEX is a constant, which is calculated by CODESYS

during the compiling of the application.

[D Determine the address by means of the operator ADR and
assigne it to the POU!

Example code — chapter Example:
CANX_MASTER_STATUS (—p.92)

Pointer address to a array [0.. MAX_NODEINDEX] of
CANx_EMERGENCY_MESSAGE
Shows the last error messages of all network nodes.

@ Determine the address by means of the operator ADR and
assigne it to the POU!

89

ExtendedController CR0232

Parameters of the outputs
2696

Parameter Data type Description

NODE_ID BYTE current node ID of the CANopen slave
BAUDRATE WORD current baudrate of the CANopen node in [kBaud]
NODE_STATE INT Current status of CANopen master

SYNC BOOL SYNC signal of the CANopen master

TRUE: In the last cycle a SYNC signal was sent
FALSE: In the last cycle no SYNC signal was sent

RX_OVERFLOW BOOL TRUE: Error; receive buffer overflow
FALSE: nooverflow
TX_OVERFLOW BOOL TRUE: Error; transmission buffer overflow
FALSE: no overflow
OD_CHANGED BOOL TRUE: Data in the object directory of the CANopen master

have been changed
FALSE: no data change

ERROR_CONTROL ARRAY [0..7] OF BYTE The array contains the list (max. 8) of missing network nodes (guard
or heartbeat error)
GET_EMERGENCY STRUCT At the output the data for the structure

CANx_EMERGENY_MESSAGE A CANx_EMERGENCY_MESSAGE are available.

The last received EMCY message in the CANopen network is always
displayed.

To obtain a list of all occurred errors, the array
EmergencyObjectSlavesArray must be evaluated!

FIRST_NODE_INDEX INT Section where the node numbers of the nodes (slaves) connected to
LAST_NODE_INDEX INT this CAN bus are located

Internal structure parameters
2698

Here you can see the structures of the arrays used in this function block.

Using Controller CR0032 as an example, the following code fragments show the use of the function
block CANx_MASTER_STATUS— chapter Example: CANx_MASTER_STATUS (— p. 92).

Structure of CANx_EMERGENCY_MESSAGE

13996

The structure is defined by the global variables of the library
ifm_CRO232_CANopenMaster_Vxxyyzz.LIB.

Parameter Data type Description
NODE_ID BYTE Node ID of the participant the EMCY has been received from
ERROR_CODE WORD Error code indicating which error has occurred.

— CANopen specification CiA Draft Standard 301 Version 4
ERROR_REGISTER BYTE Value in the error register (index 0x1001/00) of the sending participant
MANUFACTURER_ERROR_FIELD ARRAY [0..4] OF BYTE Manufacturer-specific data field in EMCY message

90

ExtendedController CR0232

Structure of CANXx_NODE_STATE

13997
The structure is defined by the global variables of the library
ifm_CR@232_CANopenMaster_Vxxyyzz.LIB.
Parameter Data type Description
NODE_ID BYTE Node ID of the CANopen slave the status information and
configuration flags in the structure belong to
NODE_STATE BYTE Current state of the CANopen slave seen from the perspective of the
CANopen stack of the CANopen master
LAST_STATE BYTE The last known state of the CANopen slave
0 = receive bootup message from CANopen slave
4 = CANopen slave in PRE-OPERATIONAL state
and is configured via SDO access
5= CANopen slave in OPERATIONAL state
127 = CANopen slave in PRE-OPERATIONAL state
RESET_NODE BOOL Flag for manual reset of CANopen slave
(NMT command = Reset_Node)
START_NODE BOOL Flag for manual start of CANopen slave
(NMT command = start)
PREOP_NODE BOOL Flag to manually set the CANopen slave to the PRE-OPERATIONAL
state
NMT command = enter PRE-OPERATIONAL)
SET_TIMEOUT_STATE BOOL Flag used to manually skip initialisation of a CANopen slave if the

following applies:
* slave does not exist in network
+ and slave is not configured as optional

SET_NODE_STATE BOOL Flag for manual initialisation of a CANopen slave
When accessing object 0x1000, the slave had identified itself as a
device type other than the one indicated in the EDS file incorporated in
the CODESYS configuration of the controller.

91

ExtendedController CR0232

Example: CANXx_MASTER_STATUS

Slave information

27895

2699

To be able to access the information of the individual CANopen nodes, you must create an array for
the corresponding structure. The structures are contained in the library. You can see them under [Data
types] in the library manager.
The number of the array elements is determined by the global variable MAX_NODEINDEX which is
automatically generated by the CANopen stack. It contains the number of the slaves minus 1 indicated
in the network configurator.

(J The numbers of the array elements do not correspond to the node ID. The identifier can be read
from the corresponding structure under NODE_ID.

Program example to CAN1_MASTER_STATUS

Declaration of the variables:
VAR

Statua: CANI_MASTER_STATLUE,

Led3taiug: BOOL = TRLIE;

StartAliMopdes: BODL:= TRUE;
ClearRaivermowFlag BOOL,

ClearRxBuifer: BOOL

ClearTxOwenlowFlag: BOOL;

ClearmsBufier: BOOL;

ClearldChanged: BOOL;

ClearErrorControl BOOL;

ResetaiModes: BOOL;

ModeStateSlavesaray. ARRAY [0.MAX_NODEIMDEX] OF CAMI_MUDE_STATE;
Emergencylojectslavesamay; ARRATD.MAX_MODEINDEX] OF CAMT_EMERGEMNCY_MESEAGE;
my_node_|d: BYTE;

my_baudrate: WORD,

my_node_state: INT;

Sync: BOOL;

RxDuwgnilow:, BOOL;

Toverfiow: BOOL,

QdChanged BOOL;

GuardHeantbeatEmararray; ARRAY0D. 7] OF BYTE:
GetEmergency; CAN1_EMERGEMNCY_MESSAGE;
StartZ BOOL;

Ency_handler: CANI_MASTER_ENMCY_HANDLER;
reset_gmcy. BOOL

ERD_V#R

Example of the program:

EmergencyibyactSlaves Amay

92

Stalus

ADH CANT_MASTER_STATUS
NodeSiata Slaves Amay SlardinotesGLOBAL _START
[ClaarRavartowFlag - CLEAR_RX_OVERFLOW_FLAG
ClearfxgumarqCLEAR_FX_SIFFER
ClearTavarowFlag-CLEAR_TY_OVERFLDW_FLAG
ClearTrBumar<qCLEAR_TX_EUFFER
ClearDdZhanged-{CLEAR_O0_CHAMGED_FLAG
ClegrErmarZontredHCLEAR,_ERFROR_COMNTROL
RegaldiMNores|RESET_4LL_NDODES
slEnZ2-qSTART_ALL_MODES
MODE_STATE_SLAVES
ELMERGENCY_DBJECT_SLAVES

MODE_ID
BALDRATE
HOOE_STATE

SYMC
RE_OVERFLOW
TE_CVERFLOW]
OD_CHAMGED
ERROR_CONTRDL
GET_EMERGEMCY|
FIRZT_MODE_INDEX

LAZT_MODE_INDEX

my_node_td

20651

ExtendedController CR0232

Structure node status

TYPE CANT_NODE_STATE ;

STRUET
HODE_|D; BYTE;
HODE_STATE: BYTE;
LAST_STATE: BYTE;
RESET_NODE: BOOL:
START_MODE: BOOL;
PRECP_MODE: BOOL;
SET_TIMEQUT_STATE: BOGL:
SET_MODE_STATE: BOOL:

END_STRUGCT

END_TYPE

Structure Emergency_Message

TYPE CANT_EMERGENCY_WMESSAGE ;
STRUET
HODE_|D: BYTE;
ERROR_CODE: YIORD;
ERROR_REGISTER: BYTE;

MANUFACTURER_ERROR_FIELD: ARRAY([D..4] OF BYTE;

END_STRUGCT
END_TYPE

27713

27712

93

ExtendedController CR0232

5.2.3 Function elements: CANopen slave

Content

CANX_SLAVE _EMCY_HANDLER ... 95
CANX_SLAVE _NODEID......co oo 96
CANX_SLAVE_SEND_EMERGENC Youttiiiiiiiiiiiiiiiiie et e e s e iieeeeeae e e s astataeeeaaeaesaanantaeesaaesssnnnsnsneesaeeeas 97
CANX_SLAVE_SET PREOP ...ttt ettt e e ettt e e e e e e s e st e e e e e e e s s enantaneeaeeeesannnnrneeeeaeaean 99
CANX_SLAVE _STATUS ...ttt e e e s e e e e e e e e st e e ee e e s e s antaaeeeeeeesaannntaaeeeaeeesansnnanneaaeanan 100

ifm electronic provides a number of FBs for the CANopen slave which will be explained below.

94

ExtendedController CR0232

CANx_SLAVE_EMCY_HANDLER

2050

x = 1...n = number of the CAN interface (depending on the device, — data sheet)

Unit type = function block (FB)

Unit is contained in the libraryifm_CR@232_CANopenxSlave_Vxxyyzz.LIB

Symbol in CODESYS:

CANx_SLAVE_EMCY_HANDLER
— CLEAR_ERROR_FIELD

Description

ERROR_REGISTER [—
ERROR_FIELD p—

27786

CANx_SLAVE_EMCY_HANDLER handles the device-specific error status of the CANopen slave:

« error register (index 0x1001) and

« error field (index 0x1003) of the CANopen object directory.

» Call the function block in the following cases:

« the error status is to be transmitted to the CAN network and
+ the error messages of the application program are to be stored in the object directory.

Moo you want to store the error messages in the object directory?
» After (repeated) handling of CANx_SLAVE_SEND_EMERGENCY (— p. 97) call

CANX_SLAVE_EMCY_HANDLER once!

Parameters of the inputs

Parameter Data type
CLEAR_ERROR _FIELD BOOL
Parameters of the outputs

Parameter Data type
ERROR_REGISTER BYTE

ERROR_FIELD ARRAY [0..5] OF WORD

27659

Description

FALSE = TRUE (edge):
« transmit content of ERROR_FIELD to function block output
+ delete content of ERROR_FIELD in object directory

else: this function is not executed

27749

Description
Shows content of OBV index 0x1001 (error register)

Shows the content of the OBV index 0x1003 (error field)
ERROR_FIELDJ[0]: number of stored errors

ERROR_FIELDJ1...5]: Stored errors, the most recent error is shown on
index [1]

95

ExtendedController CR0232

CANx_SLAVE_NODEID

2044
= CANx Slave Node-ID

x = 1...n = number of the CAN interface (depending on the device, — data sheet)

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_CANopenxSlave_Vxxyyzz.LIB

Symbol in CODESYS:

CANx_SLAVE_NODEID

=1 ENABLE
= NODEID

Description
27781

CANx_SLAVE_NODEID enables the setting of the node ID of a CANopen slave at runtime of the
application program.

Normally, the FB is called once during initialisation of the controller, in the first cycle. Afterwards, the
input ENABLE is set to FALSE again.

Parameters of the inputs
27654

Parameter Data type Description
ENABLE BOOL FALSE = TRUE (edge):

Adopt and activate parameters

else: this function is not executed
NODEID BYTE node ID = ID of the node

permissible values = 1...127

96

ExtendedController CR0232

CANx_SLAVE_SEND_EMERGENCY

2056
x = 1...n = number of the CAN interface (depending on the device, — data sheet)

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_CANopenxSlave_Vxxyyzz.LIB

Symbol in CODESYS:

CANx_SLAVE_SEND_EMERGENCY

ENABLE

ERROR

ERROR_CODE
ERROR_REGISTER
MANUFACTURER_ERROR_FIELD

Description
27787

CANx_SLAVE_SEND_EMERGENCY transmits application-specific error states. These are error
messages which are to be sent in addition to the device-internal error messages (e.g. short circuit on
the output).

» Call the FB if the error status is to be transmitted to other devices in the network.

Parameters of the inputs
27660

Parameter Data type Description

ENABLE BOOL TRUE: execute this function element
FALSE: unitis not executed

> Function block inputs are not active
> Function block outputs are not specified

ERROR BOOL Using this input, the information whether the error associated to the
configured error code is currently present is transmitted.
FALSE = TRUE (edge):
sends the next error code
if input was not TRUE in the last second
TRUE = FALSE (edge)
AND the fault is no longer indicated:
after a delay of approx. 1 s:
> zero error message is sent

else: this function is not executed

ERROR_CODE WORD The error code provides detailed information about the detected error.
The values should be entered according to the CANopen specification.

ERROR_REGISTER BYTE ERROR_REGISTER indicates the error type.
The value indicated here is linked by a bit-by-bit OR operation with all
the other error messages that are currently active. The resulting value
is written into the error register (index 100116/00) and transmitted with
the EMCY message.
The values should be entered according to the CANopen specification.

MANUFACTURER_ERROR_FIELD ARRAY [0..4] OF BYTE Here, up to 5 bytes of application-specific error information can be
entered. The format can be freely selected.

97

ExtendedController CR0232

Example: CANx_SLAVE_SEND EMERGENCY

joooi

SendErmcyl

CAaN1_SLAVE_SEMND_EMERGEMCY
TRUE-EMABLE
APPIETON<ERROR
1E#FFO0—ERROR_CODE
16281ERROR_REGISTER
MANUFACTURER_ERROE_FIELD

1

jonz

SendEmcy2

CAN1_SLAVE_SEND_EMERGERMCY
TRUE—EMABLE
ApplErrar2HERROR
1GEFF01=ERROR_CODE
16¥01{ERROR_REGISTER
IANUFACTURER_ERROR_FIELD

joona

SendEmcy3

CaH1_SLAVE_SEMD_EMERGEMGCY
TRUE=EMABLE
ApplErmoriqERROR
162FFO2-HERROR_CODE
16#81HERROR_REGISTER
MANUFACTURER_ERROR_FIELD

[0

ErmcyHandigr

CAR1_SLAWE_EMCY_HAMDLER
ClearErrarFiald-{CLEAR_ERROR_FIELD ERROR_REGISTER

ERROF_FIELD

F—0Rjekliodzh

Objekt1001h

In this example 3 error messages will be generated subsequently:

1.
2.
3.

ApplErrorl, Code = OXFFOO in the error regi
ApplError2, Code = OxFFO1 in the error regi
ApplError3, Code = OxFF02 in the error regi

ster Ox81
ster Ox81
ster Ox81

27896

CAN1_SLAVE_EMCY_HANDLER sends the error messages to the error register "Object 0x1001" in
the error array "Object 0x1003".

98

ExtendedController CR0232

CANx_SLAVE_SET _PREOP
2700
x = 1...n = number of the CAN interface (depending on the device, — data sheet)

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_CANopenxSlave_Vxxyyzz.LIB

Symbol in CODESYS:
CANx_SLAVE_SET_PREOP

—1 ENABLE

Description

2703
CANx_SLAVE_SET_PREOP switches the operating mode of this CANopen slave from
"OPERATIONAL" to "PRE-OPERATIONAL".

Normally, in case of a fault the controller switches as follows:

* a FATAL ERROR results in SOFT RESET of the controller

* an ERROR STOP results in a SYSTEM STOP

Under certain conditions it might be necessary that the application sets the operating mode of the
device working as a slave to "PRE-OPERATIONAL". This is done via the FB described here.

Parameters of the inputs
2704

Parameter Data type Description
ENABLE BOOL FALSE = TRUE (edge):
Set slave to PRE-OPERATIONAL
else: this function is not executed

99

ExtendedController CR0232

CANx_SLAVE_STATUS
2706
x = 1...n = number of the CAN interface (depending on the device, — data sheet)

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_CANopenxSlave_Vxxyyzz.LIB

Symbol in CODESYS:

CANx_SLAVE_STATUS
=] CLEAR_RX_OVERFLOW_FLAG NODE_ID |—
— CLEAR_RX_BUFFER BAUDRATE |—
— CLEAR_TX_OVERFLOW_FLAG NODE_STATE |—
— CLEAR_TX_BUFFER SYNC |—
— CLEAR_RESET_FLAGS SYNC_ERROR |—
— CLEAR_OD_CHANGED_FLAG GUARD_HEARTBEAT_ERROR |—
RX_OVERFLOW |—
TX_OVERFLOW |
RESET_NODE |—
RESET_COM |—
OD_CHANGED |—
OD_CHANGED_INDEX |

Description

2707
CANx_SLAVE_STATUS shows the status of the device used as CANopen slave.
@ we urgently recommend carrying out the evaluation of the network status via this function block.

Parameters of the inputs
2708

Parameter Data type Description
CLEAR_RX_OVERFLOW_FLAG BOOL FALSE = TRUE (edge):

Clear error flag RX_OVERFLOW

else: this function is not executed
CLEAR_RX_BUFFER BOOL FALSE = TRUE (edge):

Delete data in the receive buffer

else: this function is not executed
CLEAR_TX_OVERFLOW_FLAG BOOL FALSE = TRUE (edge):

Clear error flag TX_OVERFLOW

else: this function is not executed
CLEAR_TX_BUFFER BOOL FALSE = TRUE (edge):

Delete data in the transmit buffer

else: this function is not executed
CLEAR_RESET_FLAGS BOOL FALSE = TRUE (edge):

Clear flag RESET_NODE
Clear flag RESET_COM

else: this function is not executed

CLEAR_OD_CHANGED_FLAGS BOOL FALSE = TRUE (edge):
Clear flag OD_CHANGED
Clear flag OD_CHANGED-_INDEX

else: this function is not executed

100

ExtendedController CR0232

Parameters of the outputs

27746
Parameter Data type Description
NODE_ID BYTE current node ID of the CANopen slave
BAUDRATE WORD current baudrate of the CANopen node in [kBaud]
NODE_STATE BYTE Current status of CANopen slave
0 = Bootup message sent
4 = CANopen slave in PRE-OPERATIONAL state
and is configured via SDO access
5= CANopen slave in OPERATIONAL state
127 = CANopen slave in PRE-OPERATIONAL state
SYNC BOOL SYNC signal of the CANopen master
TRUE: In the last cycle a SYNC signal was received
FALSE: In the last cycle no SYNC signal was received
SYNC_ERROR BOOL TRUE: Error: the SYNC signal of the master was not received

or received too late
(after expiration of ComCyclePeriod)

FALSE: no SYNC error
GUARD_HEARTBEAT_ERROR BOOL TRUE: Error: the guarding or heartbeat signal of the master
was not received or received too late
FALSE: no guarding or heartbeat error

RX_OVERFLOW BOOL TRUE: Error: receive buffer overflow
FALSE: nooverflow

TX_OVERFLOW BOOL TRUE: Error; transmission buffer overflow
FALSE: no overflow
RESET_NODE BOOL TRUE: the CANopen stack of the slave was reset

by the master
FALSE: the CANopen stack of the slave was not reset

RESET_COM BOOL TRUE: the communication interface of the CAN stack was
reset by the master

FALSE: the communication interface was not reset

OD_CHANGED BOOL TRUE: Data in the object directory of the CANopen master
have been changed

FALSE: no data change
OD_CHANGED_INDEX INT Index of the object directory entry changed last

101

ExtendedController CR0232

524 Function elements: CANopen SDOs

Content
CANX_SDO _READ ...,
CANX_SDO WRITEo,

Here you will find ifm function elements for CANopen handling of Service Data Objects (SDOs).

102

ExtendedController CR0232

CANx_SDO_READ
27448

x = 1...n = number of the CAN interface (depending on the device, — data sheet)

Unit type = function block (FB)

Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

CANx_SDO_READ

ENABLE RESULT
NODE LEN
IDX

SUBIDX

DATA

Description
27791

CANx_SDO_READ reads the —SDO (— p. 253) with the indicated indexes from the node.
Prerequisite: Node must be in the mode "PRE-OPERATIONAL" or "OPERATIONAL".

By means of these, the entries in the object directory can be read. So it is possible to selectively read
the node parameters.

(1) Danger of data loss!
Allocate enough memory space for the requested SDO!
Otherwise the data following behind will be overwritten.

Example:
foond]
SO0 _read!
ADFR Cami _SDd_READ Ei R
sdal_dala — mi—4ENABLE RESULT mi
node-MODE LEM{—LEN1- -
Id—{IDH
subidi—SUBIDK
DATA
Parameters of the inputs
27629
Parameter Data type Description
ENABLE BOOL TRUE: execute this function element
FALSE: unitis not executed
> Function block inputs are not active
> Function block outputs are not specified
NODE BYTE ID of the node
permissible values = 1...127 = 0x01...0x7F

IDX WORD index in object directory
SUBIDX BYTE sub-index referred to the index in the object directory
DATA DWORD Addresse of the receive data array

valid length =0...255

Determine the address by means of the operator ADR and
assigne it to the POU!

103

ExtendedController CR0232

Parameters of the outputs

Parameter

RESULT

LEN

Data type
BYTE

WORD

Possible results for RESULT:

104

w N P O

00
01
02
03

Description

FB is inactive

27761

Description

feedback of the function block
(possible messages — following table)
length of the entry in "number of bytes"

The value for LEN must not be greater than the size of the receive
array. Otherwise any data is overwritten in the application.

FB execution completed without error — data is valid

function block is active (action not yet completed)

Error, no data received during monitoring time

ExtendedController CR0232

CANx_SDO_WRITE

27807
x = 1...n = number of the CAN interface (depending on the device, — data sheet)

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

CANx_SDO_WRITE

ENABLE RESULT |—
NODE
IDX
SUBIDX
LEN
DATA

Description
27790

CANx_SDO_WRITE writes the —SDO (— p. 253) with the specified indexes to the node.
Prerequisite: the node must be in the state "PRE-OPERATIONAL" or "OPERATIONAL".

Using this FB, the entries can be written to the object directory. So it is possible to selectively set the
node parameters.

() The value for LEN must be lower than the length of the transmit array. Otherwise, random data will
be sent.

Example:
[ooos

SO0 wrib=1

ADR CANT_SDO_WMRITE EQ R

1 ={EMABLE RESLILT i

nade—MODE 14 1
idz{ID

subide-{SUBICE
do_len=[LEM

sdod_data-

105

ExtendedController CR0232

Parameters of the inputs
27628

Parameter Data type Description

ENABLE BOOL TRUE: execute this function element

FALSE: unitis not executed
> Function block inputs are not active
> Function block outputs are not specified

NODE BYTE ID of the node
permissible values = 1...127 = 0x01...0x7F
IDX WORD index in object directory
SUBIDX BYTE sub-index referred to the index in the object directory
LEN WORD length of the entry in "number of bytes"

The value for LEN must not be greater than the size of the transmit
array. Otherwise any data is sent.

DATA DWORD Address of the transmit data array
permissible length = 0...255

Determine the address by means of the operator ADR and
assigne it to the POU!

Parameters of the outputs
27760

Parameter Data type Description

RESULT BYTE feedback of the function block
(possible messages — following table)

Possible results for RESULT:

Value

dec | hex Description
0 00 FB is inactive
1 01 FB execution completed without error — data is valid
2 02 function block is active (action not yet completed)
3 03 Error, data cannot be transmitted

106

ExtendedController CR0232

525 Function elements: SAE J1939

Content

ST PP PPPPPPPPR: 108
J1939 X GLOBAL REQUESTooiiiiiiiiiiiiietiieteseeeeesesssesssesssrsrmssrsrsrmrere 109
J1939 X _RECEIVE ... teiieee ettt e e ettt e e e e et e e e eae e s e e s st e e eeeeesaasnteaaeaeaeesaanntanneeeeeeaannnnes 111
J1939 X RESPONSEottt e et e e et e et e et e e e e e e et aeeeeeeeseaantaeeeeeaeeaaanntaaeeaeeeeaaannes 113
J1939 X _SPECIFIC_REQUESTuiiiiiiiiee ittt et e e e e s sttt e et e e e s e sastaaeeaaeeeaasantaaeeeaaeesaasntanneeaeaesaannnes 115
J1939 X TRANSMIT .. itieeee e e e cc e e e e e e e e et e e e e e eaa b eeeeteeeaeaasstaaeeeeeeesaasnnsanneeeeeesasnnbanneaaeaesannnes 117

28361

For SAE J1939, ifm electronic provides a number of function elements which will be explained in the
following.

107

ExtendedController CR0232

J1939 x
2274
x = 1...n = number of the CAN interface (depending on the device, — data sheet)

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_31939_Vxxyyzz.LIB

Symbol in CODESYS:

J1939_x

= ENABLE
—1START
= MY_ADDRESS

Description
2276

J1939 x serves as protocol handler for the communication profile SAE J1939.

To handle the communication, the protocol handler must be called in each program cycle. To do so,
the input ENABLE is set to TRUE.

™ once set, ENABLE must remain TRUE!
The protocol handler is started if the input START is set to TRUE for one cycle.

Using MY_ADDRESS, a device address is assigned to the controller. It must differ from the addresses
of the other J1939 bus patrticipants. It can then be read by other bus participants.

Parameters of the inputs
27639

Parameter Data type Description

ENABLE BOOL TRUE: execute this function element

FALSE: unitis not executed
> Function block inputs are not active
> Function block outputs are not specified

START BOOL TRUE (only for 1 cycle):
Start J1939 protocol at CAN interface x

FALSE: during further processing of the program
MY_ADDRESS BYTE J1939 address of the device

108

ExtendedController CR0232

J1939 x_GLOBAL_REQUEST
2282
x = 1...n = number of the CAN interface (depending on the device, — data sheet)

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_31939_Vxxyyzz.LIB

Symbol in CODESYS:

J1939_x_GLOBAL_REQUEST

ENABLE RESULT |—
PRIO SA b—
PG LEN |—
PF
PS
DST

Description

27878
J1939 x_ GLOBAL_REQUEST is responsible for the automatic requesting of individual messages
from all (global) active J1939 network participants. To do so, the parameters PG, PF, PS and the
address of the array DST in which the received data is stored are assigned to the FB.

[Info

PGN = [Page] + [PF] + [PS]
PDU = [PRIO] + [PGN] + [J1939 address] + [data]

27878

Risk of inadmissible overwriting of data!

» Create a receiver array with a size of 1 785 bytes.
This is the maximum size of a J1939 message.

» Check the amount of received data:
the value must not exceed the size of the array created to receive data!

» For every requested message use an own instance of the FB!
» To the destination address DST applies:

Determine the address by means of the operator ADR and assigne it to the POU!
» In addition, the priority (typically 3, 6 or 7) must be assigned.

» Given that the request of data can be handled via several control cycles, this process must be
evaluated via the RESULT byte.

e RESULT = 2: the POU is waiting for data of the participants.

e RESULT = 1: data was received by a participant.
The output LEN indicates how many data bytes have been received.
Store / evaluate this new data immediately!
When a new message is received, the data in the memory address DST is overwritten.

e RESULT = 0: no participant on the bus sends a reply within 1.25 seconds.
The FB returns to the non-active state.
Only now may ENABLE be set again to FALSE!

» For the reception of data from several participants at short intervals:
call the POU several times in the same PLC cycle and evaluate it at once!

109

ExtendedController CR0232

Parameters of the inputs

27638

Parameter Data type Description
ENABLE BOOL TRUE: execute this function element

FALSE: unitis not executed

> Function block inputs are not active
> Function block outputs are not specified

PRIO BYTE message priority (0...7)
PG BYTE Data page

Value of defined PGN (Parameter Group Number)

allowed = 0...1 (normally = 0)
PF BYTE PDU format byte

Value of defined PGN (Parameter Group Number)

PDU2 (global) = 240...255
PS BYTE PDU specific byte

Value of defined PGN (Parameter Group Number)

GE (Group Extension) =0...255
DST DWORD destination address

@ Determine the address by means of the operator ADR and

assigne it to the POU!
(& Info
PGN = [Page] + [PF] + [PS]
PDU = [PRIO] + [PGN] + [J1939 address] + [data]
Parameters of the outputs

20789

Parameter

RESULT

SA
LEN

Data type
BYTE

BYTE
WORD

Possible results for RESULT:

Value
dec | hex

110

00
01
02

Description

FB is inactive

Description

feedback of the function block
(possible messages — following table)

J1939 address of the answering device

number of received bytes

FB execution completed without error — data is valid

function block is active (action not yet completed)

ExtendedController CR0232

J1939_x_RECEIVE

2278
x = 1...n = number of the CAN interface (depending on the device, — data sheet)

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_31939_Vxxyyzz.LIB

Symbol in CODESYS:

J1939_x_RECEIVE

ENABLE RESULT [—
CONFIG DEVICE |—
PG LEN |—
PF

PS

DST
RPT
LIFE

Description
27785

J1939 x_ RECEIVE serves for receiving one individual message or a block of messages.

To do so, the FB must be initialised for one cycle via the input CONFIG. During initialisation, the
parameters PG, PF, PS, RPT, LIFE and the memory address of the data array DST are assigned.

(J once the following parameters have been configured they can no longer be modified in the running
application program: PG, PF, PS, RPT, LIFE, DST.

27785

Risk of inadmissible overwriting of data!

» Create a receiver array with a size of 1 785 bytes.
This is the maximum size of a J1939 message.

» Check the amount of received data:
the value must not exceed the size of the array created to receive data!

» To the destination address DST applies:
@ Determine the address by means of the operator ADR and assigne it to the POU!
() once RPT has been set it can no longer be modified!

» The receipt of data must be evaluated via the RESULT byte. If RESULT = 1 the data can be read
from the memory address assigned via DST and can be further processed.

> When a new message is received, the data in the memory address DST is overwritten.
> The number of received message bytes is indicated via the output LEN.
> |f RESULT = 3, no valid messages have been received in the indicated time window (LIFE * RPT).

() This block must also be used if the messages are requested using the FBs J1939_... REQUEST.

111

ExtendedController CR0232

Parameters of the inputs

Parameter

ENABLE

CONFIG

PG

PF

PS

DST

RPT

LIFE

Data type
BOOL

BOOL

BYTE

BYTE

BYTE

DWORD

TIME

BYTE

Parameters of the outputs

Parameter

RESULT

DEVICE
LEN

Data type
BYTE

BYTE
WORD

Possible results for RESULT:

Value
dec | hex
0
1
3

112

00
01
03

Description

FB is inactive

27661

Description

TRUE: execute this function element

FALSE: unitis not executed
> Function block inputs are not active
> Function block outputs are not specified

TRUE (in the 1st cycle):

configure data object
FALSE: during further processing of the program
Data page

Value of defined PGN (Parameter Group Number)
allowed = 0...1 (normally = 0)

PDU format byte

Value of defined PGN (Parameter Group Number)
PDU1 (specific) =0..239

PDU2 (global) =240...255

PDU specific byte

Value of defined PGN (Parameter Group Number)

If PF =PDU1 = PS = DA (Destination Address)
(DA = J1939 address of external device)

If PF =PDU2 = PS = GE (Group Extension)

destination address

@ Determine the address by means of the operator ADR and
assigne it to the POU!

Monitoring time

Within this time window the messages must be received
cyclically.

> Otherwise, there will be an error message.

RPT = T#0s = no monitoring

Once RPT has been set it can no longer be modified!

tolerated number of J1939 messages not received

27730

Description

feedback of the function block
(possible messages — following table)

J1939 address of the sender

number of received bytes

FB execution completed without error — data is valid

Error, no data received during monitoring time

ExtendedController CR0232

J1939_x_RESPONSE

x = 1...n = number of the CAN interface (depending on the device, — data sheet)

Unit type = function block (FB)

Unit is contained in the libraryifm_CR@232_31939_Vxxyyzz.LIB

Symbol in CODESYS:

J1939_x_RESPONSE

ENABLE
CONFIG
PG

PF

PS

SRC
LEN

RESULT

Description

J1939 x_RESPONSE handles the automatic response to a request message.

This FB is responsible for the automatic sending of messages to "Global Requests” and "Specific

Requests". To do so, the FB must be initialised for one cycle via the input CONFIG.

The parameters PG, PF, PS, RPT and the address of the data array SRC are assigned to the FB.

» To the source address SRC applies:
() Determine the address by means of the operator ADR and assigne it to the POU!
» In addition, the number of data bytes to be transmitted is assigned.

Parameters of the inputs

Parameter

ENABLE

CONFIG

PG

PF

PS

SRC

LEN

Data type
BOOL

BOOL

BYTE

BYTE

BYTE

DWORD

WORD

Description

TRUE: execute this function element

FALSE: unitis not executed
> Function block inputs are not active
> Function block outputs are not specified

TRUE (in the 1st cycle):

configure data object
FALSE: during further processing of the program
Data page

Value of defined PGN (Parameter Group Number)
allowed = 0...1 (normally = 0)

PDU format byte
Value of defined PGN (Parameter Group Number)

PDU1 (specific) =0..239
PDU2 (global) = 240...255
PDU specific byte

Value of defined PGN (Parameter Group Number)

If PF =PDU1 = PS = DA (Destination Address)
(DA = J1939 address of external device)

If PF =PDU2 = PS = GE (Group Extension)

start address in source memory

[D Determine the address by means of the operator ADR and

assigne it to the POU!

number (> 1) of the data bytes to be transmitted

2280

27872

27684

113

ExtendedController CR0232

Parameters of the outputs
27751

RESULT BYTE feedback of the function block
(possible messages — following table)

Possible results for RESULT:

0 00 FB is inactive

1 01 Data transfer completed without errors

2 02 function block is active (action not yet completed)
3 03 Error, data cannot be transmitted

114

ExtendedController CR0232

J1939 x_SPECIFIC_REQUEST
2281
x = 1...n = number of the CAN interface (depending on the device, — data sheet)

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_31939_Vxxyyzz.LIB

Symbol in CODESYS:

J1939_x_SPECIFIC_REQUEST

ENABLE RESULT [—
PRIO LEN |—
DA
PG
PF
PS
DST

Description

27873
J1939 x_SPECIFIC_REQUEST is responsible for the automatic requesting of individual messages
from a specific J1939 network participant. To do so, the logical device address DA, the parameters
PG, PF, PS and the address of the array DST in which the received data is stored are assigned to the
FB.

[Info

PGN = [Page] + [PF] + [PS]
PDU = [PRIO] + [PGN] + [J1939 address] + [data]

27873

Risk of inadmissible overwriting of data!

» Create a receiver array with a size of 1 785 bytes.
This is the maximum size of a J1939 message.

» Check the amount of received data:
the value must not exceed the size of the array created to receive data!

» To the destination address DST applies:
() Determine the address by means of the operator ADR and assigne it to the POU!
» In addition, the priority (typically 3, 6 or 7) must be assigned.

» Given that the request of data can be handled via several control cycles, this process must be
evaluated via the RESULT byte. All data has been received if RESULT = 1.

> The output LEN indicates how many data bytes have been received.

115

ExtendedController CR0232

Parameters of the inputs

27683
Parameter Data type Description
ENABLE BOOL TRUE: execute this function element
FALSE: unitis not executed
> Function block inputs are not active
> Function block outputs are not specified
PRIO BYTE message priority (0...7)
DA BYTE J1939 address of the requested device
PG BYTE Data page
Value of defined PGN (Parameter Group Number)
allowed = 0...1 (normally = 0)
PF BYTE PDU format byte
Value of defined PGN (Parameter Group Number)
PDU1 (specific) =0..239
PDU2 (global) = 240...255
PS BYTE PDU specific byte
Value of defined PGN (Parameter Group Number)
If PF =PDU1 = PS = DA (Destination Address)
(DA = J1939 address of external device)
If PF =PDU2 = PS = GE (Group Extension)
DST DWORD destination address
@ Determine the address by means of the operator ADR and
assigne it to the POU!
(& Info
PGN = [Page] + [PF] + [PS]
PDU = [PRIO] + [PGN] + [J1939 address] + [data]
Parameters of the outputs
27729

Parameter

RESULT

LEN

Data type
BYTE

WORD

Possible results for RESULT:

116

w N = O

00
01
02
03

Description

FB is inactive

Description

feedback of the function block
(possible messages — following table)

number of received bytes

FB execution completed without error — data is valid

function block is active (action not yet completed)

Error

ExtendedController CR0232

J1939_x_TRANSMIT

279
x = 1...n = number of the CAN interface (depending on the device, — data sheet)

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_31939_Vxxyyzz.LIB

Symbol in CODESYS:

J1939_x_TRANSMIT

ENABLE RESULT j—
PRIO
PG
PF
PS
SRC
LEN
RPT

Description

27875
J1939 x TRANSMIT is responsible for transmitting individual messages or blocks of messages. To do
so, the parameters PG, PF, PS, RPT and the address of the data array SRC are assigned to the FB.

(& Info

PGN = [Page] + [PF] + [PS]
PDU = [PRIO] + [PGN] + [J1939 address] + [data]

» To the source address SRC applies:
Determine the address by means of the operator ADR and assigne it to the POU!

» In addition, the number of data bytes to be transmitted and the priority (typically 3, 6 or 7) must be
assigned.

» Given that the transmission of data is processed via several control cycles, the process must be
evaluated via the RESULT byte. All data has been transmitted if RESULT = 1.

(2] If more than 8 bytes are to be sent, a "multi package transfer” is carried out.

117

ExtendedController CR0232

Parameters of the inputs

27686
Parameter Data type Description
ENABLE BOOL TRUE: execute this function element
FALSE: unitis not executed
> Function block inputs are not active
> Function block outputs are not specified
PRIO BYTE message priority (0...7)
PG BYTE Data page
Value of defined PGN (Parameter Group Number)
allowed = 0...1 (normally = 0)
PF BYTE PDU format byte
Value of defined PGN (Parameter Group Number)
PDU1 (specific) =0...239
PDU2 (global) = 240...255
PS BYTE PDU specific byte
Value of defined PGN (Parameter Group Number)
If PF =PDU1 = PS = DA (Destination Address)
(DA = J1939 address of external device)
If PF =PDU2 = PS = GE (Group Extension)
SRC DWORD start address in source memory
@ Determine the address by means of the operator ADR and
assigne it to the POU!
LEN WORD number of data bytes to be transmitted
allowed = 1...1 785 = 0x0001...0x06F9
RPT TIME Repeat time during which the data messages are to be transmitted
cyclically
RPT = T#0s = sentonly once
(& Info
PGN = [Page] + [PF] + [PS]
PDU = [PRIO] + [PGN] + [J1939 address] + [data]
Parameters of the outputs
27732
Parameter Data type Description
RESULT BYTE feedback of the function block

(possible messages — following table)

Possible results for RESULT:

118

w N = O

00
01
02
03

Description

FB is inactive
FB execution completed without error — data is valid
function block is active (action not yet completed)

Error, data cannot be transmitted

ExtendedController CR0232

5.2.6 Function elements: serial interface

Content

SERIAL _PENDING ... 120

SERIAL RX e 121

SERIAL _SETUP ...ttt e e e e e e e e et e e e e e sa st e teeeeeee s e e antaeaeeeeeesaasnteneeaaeeesannrnraneeaeeaean 122

LS 2 I S 123
13011
32570

M NOTE

The serial interface is not available to the user by default, because it is used for program download
and debugging.

The interface can be freely used if the user sets the system flag bit SERIAL_MODE=TRUE.
Debugging of the application program is then only possible via any of the CAN interfaces.

The function blocks listed below allow you to use the serial interface in the application program.

119

ExtendedController CR0232

SERIAL_PENDING

27711
Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

SERIAL_PENDING

NUMBER p—

Description
12994

SERIAL_PENDING determines the number of data bytes stored in the serial receive buffer.

In contrast to SERIAL_RX the content of the buffer remains unchanged after this function has been
called.

The SERIAL FBs form the basis for the creation of an application-specific protocol for the serial
interface.

To do so, set the system flag bit SERIAL_ MODE=TRUE!
32976

® NOTE

The serial interface is not available to the user by default, because it is used for program download
and debugging.

The interface can be freely used if the user sets the system flag bit SERIAL_MODE=TRUE.
Debugging of the application program is then only possible via any of the CAN interfaces.

Parameters of the outputs
12996

Parameter Data type Description

NUMBER WORD Number of data bytes received (1...1 000)

120

ExtendedController CR0232

SERIAL_RX

27722

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

SERIAL_RX

=] CLEAR RX —
AVAILABLE |—
OVERFLOW |—

Description
12997

SERIAL_RX reads a received data byte from the serial receive buffer at each call.

If more than 1000 data bytes are received, the buffer overflows and data is lost. This is indicated by
the bit OVERFLOW.

If 7-bit data transmission is used, the 8th bit contains the parity and must be suppressed by the user if
necessary.

The SERIAL FBs form the basis for the creation of an application-specific protocol for the serial
interface.

To do so, set the system flag bit SERIAL_MODE=TRUE!

32837

® NOTE

The serial interface is not available to the user by default, because it is used for program download
and debugging.

The interface can be freely used if the user sets the system flag bit SERIAL_MODE=TRUE.
Debugging of the application program is then only possible via any of the CAN interfaces.

Parameters of the inputs
27694
Parameter Data type Description

CLEAR BOOL TRUE: delete receive buffer
FALSE: function element is not executed

Parameters of the outputs
12931

Parameter Data type Description
Rx BYTE Byte data received from the receive buffer
AVAILABLE WORD Number of received bytes available in the receive buffer BEFORE the

call of the function block:
0 = no data received
1...1 000 = number of bytes in the receive buffer

OVERFLOW BOOL TRUE: Overflow of the data buffer = loss of data!
FALSE: Data buffer is without data loss

121

ExtendedController CR0232

SERIAL_SETUP

27723
Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

SERIAL_SETUP

ENABLE
BAUDRATE
DATABITS
PARITY
STOPBITS

Description
13000

SERIAL_SETUP initialises the serial RS232 interface.

The function block does not necessarily need to be executed in order to be able to use the serial
interface. Without function block call the last preset value applies.

Using ENABLE=TRUE for one cycle, the function block sets the serial interface to the indicated
parameters. The changes made with the help of the function block are saved non-volatily.
32977

M NOTE

The serial interface is not available to the user by default, because it is used for program download
and debugging.

The interface can be freely used if the user sets the system flag bit SERIAL_MODE=TRUE.
Debugging of the application program is then only possible via any of the CAN interfaces.

Parameters of the inputs
13002

Parameter Data type Description
ENABLE BOOL TRUE (only for 1 cycle):
Initialise interface
FALSE: during further processing of the program
BAUD RATE DWORD Baud rate

permissible values — data sheet
preset value — data sheet

DATABITS BYTE =8 Number of data bits
allowed =7 or 8
PARITY BYTE =0 Parity

allowed: 0=none, 1=even, 2=0dd

@ With parameter setting DATABITS =7 and PARITY = 0:
function block operates with PARITY =1

STOPBITS BYTE :=1 Number of stop bits
allowed =1 or 2

122

ExtendedController CR0232

SERIAL_TX

27720

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:
SERIAL_TX

— ENABLE
= DATA

Description
13003

SERIAL_TX transmits one data byte via the serial RS232 interface.
The FiFo transmission memory contains 1 000 bytes.
Using the input ENABLE the transmission can be enabled or disabled.

The SERIAL FBs form the basis for the creation of an application-specific protocol for the serial
interface.
To do so, set the system flag bit SERIAL_ MODE=TRUE!

32838

M NOTE

The serial interface is not available to the user by default, because it is used for program download
and debugging.

The interface can be freely used if the user sets the system flag bit SERIAL_MODE=TRUE.
Debugging of the application program is then only possible via any of the CAN interfaces.

Parameters of the inputs
28461
Parameter Data type Description

ENABLE BOOL TRUE: execute this function element

FALSE: unitis not executed
> Function block inputs are not active
> Function block outputs are not specified

DATA BYTE value to be transmitted

123

ExtendedController CR0232

5.2.7 Function elements: Optimising the PLC cycle via processing interrupts

Content
SET _INTERRUPT .ottt e e e st e e e s ket e e e e st e e e e e anbe e e e e anbeeeeenrnas 125
SET_INTERRUPT _XIMS ...ttt ettt e e s it e e e s s et e e e an b et e e e e abe e e e e anbn e e e e anbneeeeanrns 127
20965
28098
Here we show you functions to optimise the PLC cycle.
28098

The PLC cyclically processes the stored application program in its full length. The cycle time can vary
due to program branchings which depend e.g. on external events (= conditional jumps). This can have
negative effects on certain functions.

By means of systematic interrupts of the cyclic program it is possible to call time-critical processes
independently of the cycle in fixed time periods or in case of certain events.

Since interrupt functions are principally not permitted for SafetyControllers, they are thus not available.

124

ExtendedController CR0232

SET_INTERRUPT_I

27727

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

SET_INTERRUPT_|

ENABLE
CHANNEL

MODE
READ_INPUTS
WRITE_OUTPUTS
ANALOG_INPUTS

Description

19361
33947

SET_INTERRUPT_I handles the execution of a program part by an interrupt request via an input
channel.

In the conventional PLC the cycle time is decisive for real-time monitoring. So the PLC is at a
disadvantage as compared to customer-specific controllers. Even a "real-time operating system" does
not change this fact when the whole application program runs in one single block which cannot be
changed.

A possible solution would be to keep the cycle time as short as possible. This often leads to splitting
the application up to several control cycles. This, however, makes programming complex and difficult.

Another possibility is to call a certain program part only upon request by an input pulse independently
of the control cycle:

The time-critical part of the application is integrated by the user in a block of the type PROGRAM
(PRG). This block is declared as the interrupt routine by calling SET_INTERRUPT _I once (during
initialisation). As a consequence, this program block will always be executed if an edge is detected on
the input CHANNEL. If inputs and outputs are used in this program part, these are also read and
written in the interrupt routine, triggered by the input edge. Reading and writing can be stopped via the
FB inputs READ_INPUTS, WRITE_OUTPUTS and ANALOG_INPUTS.

So in the program block all time-critical events can be processed by linking inputs or global variables
and writing outputs. So FBs can only be executed if actually called by an input signal.

® NOTE

The program block should be skipped in the cycle (except for the initialisation call) so that it is not
cyclically called, too.

The input (CHANNEL) monitored for triggering the interrupt cannot be initialised and further processed
in the interrupt routine.

The runtime of the main cycle plus the sum of the duration of all program parts called via interrupt
must always be within the max. permissible cycle time!

The user is responsible for data consistency between the main program and the program parts
running in the interrupt mode!

125

ExtendedController CR0232

33947
Interrupt priorities:

e All program parts called via interrupt have the same priority of execution. Several simultaneous
interrupts are processed sequentially in the order of their occurrence.

e If a further edge is detected on the same input during execution of the program part called via
interrupt, the interrupt is listed for processing and the program is directly called again after
completion. As an option, interfering multiple pulses can be filtered out by setting the glitch filter.

e The program running in the interrupt mode can be disrupted by interrupts with a higher priority
(e.g. CAN).

e If several interrupts are present on the same channel, the last initialised FB (or the PRG) will be
assigned the channel. The previously defined FB (or the PRG) is then no longer called and no
longer provides data.

19365

® NOTE

The uniqueness of the inputs and outputs in the cycle is affected by the interrupt routine. Therefore
only part of the inputs and outputs is serviced. If initialised in the interrupt program, the following inputs
and outputs will be read or written:

* Inputs: INOO...INO7

* Outputs: QO00...Q07

Global variants, too, are no longer unique if they are accessed simultaneously in the cycle and by the
interrupt routine. This problem applies in particular to larger data types (e.g. DINT).

All other inputs and outputs are processed once in the cycle, as usual.

Parameters of the inputs
27646

Parameter Data type Description

ENABLE BOOL TRUE (only for 1 cycle):
initialisation of the function block

FALSE: unitis not executed

CHANNEL BYTE Number of interrupt input
0...7 for the inputs INOO...INO7
MODE BYTE Type of edge at the input CHANNEL which triggers the interrupt
1 = rising edge (standard value)
2 =falling edge

3 =rising and falling edge
> 3 = standard value

READ_INPUTS BOOL TRUE: read the inputs 0...7 before calling the program
and write into the input flags 100...107
FALSE: only read the channel indicated under CHANNEL
and write to the corresponding input flag Ixx
WRITE_OUTPUTS BOOL TRUE: write the current values of the output flags Q00...Q07
to the outputs after completion of the program sequence
FALSE: do not write outputs
ANALOG_INPUTS BOOL TRUE: read inputs 0...7 and write the unfiltered, uncalibrated
analogue values to the flags ANALOG_IRQ00...07
FALSE: do not write flags ANALOG_IRQ00...07

126

ExtendedController CR0232

SET_INTERRUPT_XMS

28322
Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

SET_INTERRUPT_XMS

ENABLE
REPEATTIME
READ_INPUTS
WRITE_OUTPUTS
ANALOG_INPUTS

Description
28132

SET_INTERRUPT_XMS handles the execution of a program part at an interval of x ms.

In the conventional PLC the cycle time is decisive for real-time monitoring. So, the PLC is at a
disadvantage as compared to customer-specific controllers. Even a "real-time operating system" does
not change this fact when the whole application program runs in one single block which cannot be
changed.

A possible solution would be to keep the cycle time as short as possible. This often leads to splitting
the application up to several control cycles. This, however, makes programming complex and difficult.

Another possibility is to call a certain program part at fixed intervals (every xAnother possibility is to
call a certain program part at fixed intervals (every x ms) independently of the control cycle.

The time-critical part of the application is integrated by the user in a block of the type PROGRAM
(PRG). This block is declared as the interrupt routine by calling SET_INTERRUPT_XMS once (during
initialisation). As a consequence, this program block is always processed after the REPEATTIME has
elapsed (every x ms). If inputs and outputs are used in this program part, they are also read and
written in the defined cycle. Reading and writing can be stopped via the FB inputs READ_INPUTS,
WRITE_OUTPUTS and ANALOG_INPUTS.

So, in the program block all time-critical events can be processed by linking inputs or global variables
and writing outputs. So, timers can be monitored more precisely than in a "normal cycle".

® NOTE

To avoid that the program block called by interrupt is additionally called cyclically, it should be skipped
in the cycle (with the exception of the initialisation call).

Several timer interrupt blocks can be active. The time requirement of the interrupt functions must be
calculated so that all called functions can be executed. This in particular applies to calculations,
floating point arithmetic or controller functions.

The user is responsible for data consistency between the main program and the program parts
running in the interrupt!

Please note: In case of a high CAN bus activity the set REPEATTIME may fluctuate.

127

ExtendedController CR0232

28132

M NOTE

The uniqueness of the inputs and outputs in the cycle is affected by the interrupt routine. Therefore
only part of the inputs and outputs is serviced. If initialised in the interrupt program, the following inputs
and outputs will be read or written.

Inputs, digital:

%I1X0.0...9%1X0.7 (Controller: CRONn3n, CR7n3n)

%IX0.12...%I1X0.15, %IX1.4...%I1X1.8 (all other ClassicController, ExtendedController, SafetyController)
%I1X0.0, %1X0.8 (SmartController: CR250n)

INO8...IN11 (CabinetController: CR0O30n)

INO...IN3 (PCB controller: CS0015)

Inputs, analogue:

%I1X0.0...%1X0.7 (Controller: CROn3n, CR7n3n)

All channels (selection bit-coded) (all other controller)

Outputs, digital:

%QX0.0...90QX0.7 (ClassicController, ExtendedController, SafetyController)

%QX0.0, %QX0.8 (SafetyController: CR7nnn)

OUTO00...0UTO03 (CabinetController: CR030n)

OUTO0...0UT7 (PCB controller: CS0015)

Global variants, too, are no longer unique if they are accessed simultaneously in the cycle and by the
interrupt routine. This problem applies in particular to larger data types (e.g. DINT).

All other inputs and outputs are processed once in the cycle, as usual.

Parameters of the inputs
28486

Parameter Data type Description
ENABLE BOOL TRUE (only for 1 cycle):
initialisation of the function block
FALSE: unitis not executed

REPEATTIME TIME Duration in [ms] between end of program and reboot
The duration between two calls is determined as the sum of
REPEATTIME and runtime of the program called via interrupt.
READ_INPUTS BOOL TRUE: read the inputs 0...7 before calling the program
and write into the input flags 100...107
FALSE: no update of the inputs
WRITE_OUTPUTS BOOL TRUE: write the current values of the output flags Q00...Q07
to the outputs after completion of the program sequence
FALSE: do not write outputs
ANALOG_INPUTS BOOL TRUE: read inputs 0...7 and write the unfiltered, uncalibrated
analogue values to the flags ANALOG_IRQ00...07
FALSE: do not write flags ANALOG_IRQ00...07

128

ExtendedController CR0232

5.2.8 Function elements: processing input values

Content
INPUT _ANALOGceitiiiii s nnnan 130

In this chapter we show you ifm FBs which allow you to read and process the analogue or digital
signals at the device input.

® NOTE

The analogue raw values shown in the PLC configuration of CODESY'S directly come from the ADC.
They are not yet corrected!

Therefore different raw values can appear in the PLC configuration for identical devices.

Error correction and normalisation are only carried out by ifm function blocks. The function blocks
provide the corrected value.

129

ExtendedController CR0232

INPUT_ANALOG

2245
Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

[E For the extended side of the ExtendedControllers the FB name ends with '_E".

Symbol in CODESYS:

INPUT_ANALOG
= ENABLE ouT p—
=1 MODE ERROR f—
— CHANNEL
Description

2361
12916

INPUT_ANALOG enables the following operating modes at the input channels.
Details — chapter Possible operating modes inputs/outputs (— p. 233)

The function block provides the current analogue value at the selected analogue channel. The
analogue values are provided as standardised values. At the same time the uncalibrated raw values
are provided via the system flags ANALOGXxX.

» For frequency and period measurements as well as counter functions: set MODE=1
(= IN_DIGITAL_H)!

The measurement and the output value results from the operating mode indicated via MODE:
12917

MODE FB Output

dec | hex Input operating mode ouT Unit
0 00 deactivated ---
1 01 binary input, minus switching (BH) IN_DIGITAL_H 0/1 ---
2 02 binary input, plus switching (BL) IN_DIGITAL_L 0/1 -
4 04 current input IN_CURRENT 0...20 000 HA
8 08 voltage input IN_VOLTAGE_10 0...10 000 mV
16 10 voltage input IN_VOLTAGE_30 0...32 000 mV
32 20 voltage input, ratiometric IN_RATIO 0...1 000 %0
64 40 diagnosis IN_DIAGNOSIS ---
128 80 fastinput IN_FAST 0/1

18414

@ i inputl15 is not used:
P Configure input 115 as binary input!

130

ExtendedController CR0232

Parameters of the inputs

2362
Parameter Data type Description
ENABLE BOOL TRUE: execute this function element
FALSE: unitis not executed
> Function block inputs are not active
> Function block outputs are not specified
MODE BYTE operating mode of the input channel:
0=0x00 IN_NOMODE (off; preset is active)
1=0x01 IN_DIGITAL_H preset
2=0x02 IN_DIGITAL_L
4 =0x04 IN_CURRENT 0...20 000 pA
8=0x08 IN_VOLTAGE10 0...10 000 mV
16 =0x10 IN_VOLTAGE30 0...32000 mV
32=0x20 IN_RATIO 0...1 000 %o
64 = 0x40 IN_DIAGNOSTIC
128 = 0x80 IN_FAST]
CHANNEL BYTE Number of input channel
0...15 for the inputs 100...115
For the function block xxx_E (if available) applies:
0...15 for the inputs 100_E...115_E
Parameters of the outputs
2363
Parameter Data type Description
ouT WORD Output value according to MODE
in case of an invalid setting: OUT = "0"
ERROR BYTE 00 = okay
01 = over-current for IN_CURRENT
02 = short circuit to VBB for IN_DIGITAL_H,
OUT_DIAGNOSTIC
03 = wire break for IN_DIGITAL_H,

OUT_DIAGNOSTIC

131

ExtendedController CR0232

5.29 Function elements: adapting analogue values

Content

IO] 133
INORM _ DINT Lottt s 135
N[O Y S 136

If the values of analogue inputs or the results of analogue functions must be adapted, the following
FBs will help you.

132

ExtendedController CR0232

NORM

Unit type = function block (FB)

Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

NORM

X

XH
XL
YH
YL

Description

27675

27772

NORM normalises a value within defined limits to a value with new limits.

The FB normalises a value of type WORD within the limits of XH and XL to an output value within the
limits of YH and YL. This FB is for example used for generating PWM values from analogue input
values.

©

| 2

NOTE

The value for X must be in the defined input range between XL and XH!

There is no internal plausibility check of the value X.

Due to rounding errors the normalised value can deviate by 1.
If the limits (XH/XL or YH/YL) are defined in an inverted manner, normalisation is also done in an

inverted manner.

Parameters of the inputs

Parameter Data type
X WORD
XH WORD
XL WORD
YH WORD
YL WORD

Parameters of the outputs

Parameter Data type

Y

WORD

27679

Description

input value

Upper limit of input value range [increments]
Lower limit of input value range [increments]
Upper limit of output value range

Lower limit of output value range

27742

Description

output value

133

ExtendedController CR0232

Example: NORM (1)

lower limit value input 0
upper limit value input 100
lower limit value output 0
upper limit value output 2000

then the FB converts the input signal for example as follows:

from X = 50 0 100
J J \’
toY = 1000 0 2000

Example: NORM (2)

lower limit value input 2000
upper limit value input 0
lower limit value output 0
upper limit value output 100

then the FB converts the input signal for example as follows:

from X = 1000 0 2000
J \’)
toY = 50 100 0

134

XL
XH
YL
YH

XL
XH
YL
YH

75

1500

1500

25

27883

27884

ExtendedController CR0232

NORM_DINT

2217
Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

NORM_DINT

XH
XL
YH
YL

Description
2355

NORM_DINT normalises a value within defined limits to a value with new limits.
The FB normalises a value of type DINT within the limits of XH and XL to an output value within the

limits of YH and YL. This FB is for example used for generating PWM values from analogue input
values.

® NOTE

» The value for X must be in the defined input range between XL and XH!
There is no internal plausibility check of the value X.

» The result of the calculation (XH-XL)*(YH-YL) must remain in the value range of data type DINT
(-2 147 483 648...2 147 483 647)!

> Due to rounding errors the normalised value can deviate by 1.

> If the limits (XH/XL or YH/YL) are defined in an inverted manner, normalisation is also done in an
inverted manner.

Parameters of the inputs
2359

Parameter Data type Description

X DINT current input value

XH DINT upper limit of input value range
XL DINT lower limit of input value range
YH DINT upper limit of output value range
YL DINT lower limit of output value range

Parameters of the outputs
2360

Parameter Data type Description

Y DINT output value

135

ExtendedController CR0232

NORM_REAL

2218
Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

NORM_REAL

XH
XL
YH
YL

Description
2358

NORM_REAL normalises a value within defined limits to a value with new limits.
The FB normalises a value of type REAL within the limits of XH and XL to an output value within the

limits of YH and YL. This FB is for example used for generating PWM values from analogue input
values.

® NOTE

» The value for X must be in the defined input range between XL and XH!
There is no internal plausibility check of the value X.

» The result of the calculation (XH-XL)*(YH-YL) must remain in the value range of data type REAL
(-3,402823466-10%...3,402823466+1038)!

> Due to rounding errors the normalised value can deviate by 1.

> If the limits (XH/XL or YH/YL) are defined in an inverted manner, normalisation is also done in an
inverted manner.

Parameters of the inputs
2356

Parameter Data type Description

X REAL Input value

XH REAL Upper limit of output value range

XL REAL Lower limit of the input value range
YH REAL Upper limit of the output value range
YL REAL Lower limit of output value range

Parameters of the outputs
2357

Parameter Data type Description

Y REAL Output value

136

ExtendedController CR0232

5.2.10 Function elements: counter functions for frequency and period

measurement

Content

FAST COUNT ...ttt s 138
FREQUENQ Y ...ttt s 140
FREQUENGCY PERIODuuuiiiiiiiitii e as 142
INC _ENCODERouiuiiiii s 144
[= [] T 146
[1] T AN [RS 148
PH ASEottt e e oottt e e e e e et et e b e eeeeetaataaa—eeeeteeatabaeeeteeeaabaanateaeteeabab e reaeteerrabaaaaaaes 150

2322

Depending on the ecomatmobile device up to 16*) fast inputs are supported which can process input
frequencies of up to 30 kHz. In addition to frequency measurement, the inputs can also be used for
the evaluation of incremental encoders (counter function).

*) ExtendedController: up to 32 fast inputs

Due to the different measuring methods errors can occur when the frequency is determined.
The following FBs are available for easy evaluation:

Function element Permissible values Explanation

Measurement of the frequency on the indicated channel.

FREQUENCY 0.1...30 000 Hz Measurement error is reduced in case of high frequencies

PERIOD 0.1...5 000 Hz Measurement of frequency and period duration (cycle time) on the indicated
channel

PERIOD_RATIO 0.1..5 000 Hz Measurement of f(equency and_ pe_riod duration (cycle time) as well as
mark-to-space ratio [%o] on the indicated channel
The FB combines the two FBs FREQUENCY and PERIOD or PERIOD_RATIO.

FREQUENCY_PERIOD 0.1...30 000 Hz Automatic selection of the measuring method at 5 kHz

PHASE 0.1...5 000 Hz Reading of a channel pair and comparison of the phase position of the signals

INC_ENCODER 0.1...30 000 Hz Up/down counter function for the evaluation of encoders

FAST_COUNT 0.1...30 000 Hz Counting of fast pulses

@ Important when using the fast inputs as "normal” digital inputs:

» The increased sensitivity to noise pulses must be taken into account (e.g. contact bouncing for
mechanical contacts).

» The input signal must be debounced, if necessary! — chapter Configure the hardware filter (—
p. 61)

e The standard digital input can evaluate signals up to 50 Hz.

137

ExtendedController CR0232

FAST_COUNT

567

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

[E For the extended side of the ExtendedControllers the FB name ends with '_E".

Symbol in CODESYS:

FAST_COUNT

ENABLE cVl—
INIT

CHANNEL
MODE_UP_DOWN
LOAD

PV

Description
6830

FAST_COUNT operates as counter block for fast input pulses.

During ENABLE=TRUE the function block detects rising edges at the FRQ input channels.

Maximum input frequency — data sheet.

If resetting and newly setting ENABLE, the counter continues to count from the value that was valid at
the last reset of ENABLE.

When setting INIT (rising edge) the count value CV is set to 0.
When resetting the parameter INIT the counter counts from 0.

(Mbo not use this function block on one input together with one of the following function blocks!
* FREQUENCY (— p. 140)

* FREQUENCY_PERIOD (— p. 142)

* INC_ENCODER (— p. 144)

* PERIOD (— p. 146)

* PERIOD_RATIO (— p. 148)

* PHASE (— p. 150)

33949

® NOTE

In case of higher frequencies (higher than those guaranteed by ifm) the following problems may occur:
e The switch-on and switch-off times of the outputs become more important.
e Undue heating of the components may occur.

The influences mentioned above depend on the components used in the individual case.
These possible influences cannot be exactly predicted.

138

ExtendedController CR0232

Parameters of the inputs

Parameter

ENABLE

INIT

CHANNEL

MODE_UP_DOWN

LOAD

PV

Parameters of the outputs

Parameter

cv

Data type
BOOL

BOOL

BYTE

BOOL

BOOL

DWORD

Data type
DWORD

Description

TRUE: execute this function element
FALSE: unitis not executed
> counter stopped
FALSE = TRUE (edge):
unitis initialised
FALSE: during further processing of the program

number of the fast input channel
0...15 for the inputs 100...115

For the function block xxx_E (if available) applies:

0...15 for the inputs 100_E...115_E

TRUE: counter counts downwards
FALSE: counter counts upwards

TRUE: start value PV is loaded in CV
FALSE: function element is not executed

Start value (preset value) for the counter

Description

current counter value

Behaviour in case of overflow:

+ the counter stops at 0 when counting downwards
+ there is an overflow when counting upwards

571

28430

139

ExtendedController CR0232

FREQUENCY

537
Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

[E For the extended side of the ExtendedControllers the FB name ends with '_E".
Symbol in CODESYS:

FREQUENCY

=1 INIT Fp—
—] CHANNEL
— TIMEBASE

Description

2325
20675

FREQUENCY measures the frequency of the signal arriving at the selected CHANNEL. The FB
evaluates the positive edge of the signal.

Depending on the TIMEBASE, frequency measurements can be carried out in a wide value range.
* high frequencies require a short timebase
* low frequencies require a longer timebase

Limit values:
TIMEBASE permissible, measurable frequency
_ 57000 ms 1149 Hz
(= maximum value)
30 000 Hz

2184 ms (= maximum value)

The longer the timebase for the frequency to be measured, the more precise the measured value
determined.

Example of a frequency = 1 Hz:

TIMEBASE [ms] max. errors [%] Measurement [Hz]
1 000 100 0..2
10 000 10 0.9..11

The frequency is provided directly in [HZz].

33957

® NOTE

In case of higher frequencies (higher than those guaranteed by ifm) the following problems may occur:
e The switch-on and switch-off times of the outputs become more important.
e Undue heating of the components may occur.

The influences mentioned above depend on the components used in the individual case.
These possible influences cannot be exactly predicted.

7321

@ For frequency measuring: ensure that the function block does not receive more than 65 535
positive edges within the value of TIMEBASE!
Otherwise, the internal counting register may overflow and lead to incorrect results.

140

ExtendedController CR0232

(Mbo not use this function block on one input together with one of the following function blocks!

« FAST_COUNT (- p. 138)

« FREQUENCY_PERIOD (— p. 142)
« INC_ENCODER (— p. 144)

« PERIOD (- p. 146)

« PERIOD_RATIO (— p. 148)

« PHASE (- p. 150)

Parameters of the inputs

Parameter Data type
INIT BOOL
CHANNEL BYTE
TIMEBASE TIME

Parameters of the outputs

Parameter Data type

F REAL

Description

TRUE (only for 1 cycle):
Function block and interface are initialised
FALSE: measurement in process
or:measurement begins if previously INIT=TRUE
number of the fast input channel
0...15 for the inputs 100...115
For the function block xxx_E (if available) applies:
0...15 for the inputs 100_E...115_E

Time basis for frequency measurement (max. 57 s)

Description

frequency of the input signal in [Hz]

2599

28425

141

ExtendedController CR0232

FREQUENCY_PERIOD

2206

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

[E For the extended side of the ExtendedControllers the FB name ends with '_E".

Symbol in CODESYS:

FREQUENCY_PERIOD
—{INiT cl—
—] CHANNEL Fl—
— PERIODS ET[—
— TIMEBASE RATIO1000 [—
—RATIO_ENABLE

Description

2335
20676

FREQUENCY_PERIOD measures the frequency and period duration (cycle time) in [us] on the
indicated channel (allowed for all inputs). Maximum input frequency — data sheet.

The FB combines PERIOD/PERIOD_RATIO and FREQUENCY in a common function. The measuring
method is automatically selected at approx. 5 kHz:

* below 5.2 kHz the FB behaves like PERIOD or PERIOD_RATIO

» above 5.5 kHz the FB behaves like FREQUENCY.

This FB measures the frequency and the cycle time of the signal at the selected CHANNEL. To
calculate, all positive edges are evaluated and the average value is determined by means of the
number of indicated PERIODS.

For an input frequency > 5 kHz and an active FREQUENCY mode the ratio cannot be measured.

The maximum measuring range is approx. 15 min.
33948

® NOTE

In case of higher frequencies (higher than those guaranteed by ifm) the following problems may occur:
e The switch-on and switch-off times of the outputs become more important.
e Undue heating of the components may occur.

The influences mentioned above depend on the components used in the individual case.
These possible influences cannot be exactly predicted.

7321

@ For frequency measuring: ensure that the function block does not receive more than 65 535
positive edges within the value of TIMEBASE!
Otherwise, the internal counting register may overflow and lead to incorrect results.

M NOTE

Do not use this function block on one input together with one of the following function blocks!
* FAST_COUNT (— p. 138)

* FREQUENCY (— p. 140)

* INC_ENCODER (— p. 144)

* PERIOD (— p. 146)

* PERIOD_RATIO (— p. 148)

* PHASE (— p. 150)

142

ExtendedController CR0232

Parameters of the inputs

Parameter

INIT

CHANNEL

PERIODS

TIMEBASE
RATIO_ENABLE

Parameters of the outputs

Parameter

C

ET

RATIO1000

Data type
BOOL

BYTE

BYTE

TIME
BOOL

Data type
DWORD

REAL
TIME

WORD

2336

Description
TRUE (only for 1 cycle):
Function block and interface are initialised
FALSE: measurement in process
or:measurement begins if previously INIT=TRUE
number of the fast input channel
0...15 for the inputs 100...115
For the function block xxx_E (if available) applies:
0...15 for the inputs 100_E...115_E

Number of periods to be averaged (1...16)
0 : Outputs C and F are not updated
>16: is limited to 16

Time basis for frequency measurement (max. 57 s)

TRUE: Ratio measurement provided to RATIO1000
FALSE: No ratio measurement provided

2337

Description

Cycle time of the detected periods in [us]
permissible = 33...10 000 000 = 0x21...0x989680

frequency of the input signal in [Hz]

for measuring the interval:

(can be used for very slow signals)

RATIO_ENABLE = TRUE:

time elapsed since the last change of edge on the input

RATIO_ENABLE = FALSE:
time elapsed since the last rising edge on the input

for other measurements:
ET=0

Mark-to-space ratio in [%o]
permissible = 1...999 = 0x1...0x3E7
Preconditions:

« for measuring the interval

* pulse duration > 100 ps

« frequency < 5 kHz

143

ExtendedController CR0232

INC_ENCODER

525
= Incremental Encoder

Unit type = function block (FB)
Unit is contained in the libraryifm_CR0232_Vxxyyzz.LIB

[E For the extended side of the ExtendedControllers the FB name ends with'_E".

Symbol in CODESYS:

INC_ENCODER
=—1INIT COUNTER p—
—] CHANNEL UP |—
= PRESET_VALUE DOWN =
= PRESET
Description

2602
INC_ENCODER offers up/down counter functions for the evaluation of encoders.
Each input pair to be evaluated by means of the function block is formed by two frequency inputs.

Limit frequency = 30 kHz
max. humber of units to be connected: 4 encoders (ExtendedController: max. 8 encoders)

Set preset value:

1. Enter value in PRESET_VALUE

2. Set PRESET to TRUE for one cycle
3. Reset PRESET to FALSE

The function block counts the pulses at the inputs as long as INIT=FALSE and PRESET=FALSE.
The current counter value is available at the output COUNTER.

The outputs UP and DOWN indicate the current counting direction of the counter. The outputs are
TRUE if the counter has counted in the corresponding direction in the preceding program cycle. If the
counter stops, the direction output in the following program cycle is also reset.

@Do not use this function block on one input together with one of the following function blocks!
* FAST_COUNT (— p. 138)

* FREQUENCY (— p. 140)

* FREQUENCY_PERIOD (— p. 142)

* PERIOD (— p. 146)

* PERIOD_RATIO (— p. 148)

* PHASE (— p. 150)

144

ExtendedController CR0232

Parameters of the inputs

Parameter

INIT

CHANNEL

PRESET_VALUE
PRESET

Parameters of the outputs

Parameter
COUNTER
UP

DOWN

Data type
BOOL

BYTE

DINT
BOOL

Data type
DINT
BOOL

BOOL

Description

TRUE (only for 1 cycle):
Function block is initialised

FALSE: during further processing of the program

Number of the input channel pair
0 = channel pair 0 = inputs 100 + 101

3 = channel pair 3 = inputs 106 + 107

For the function block xxx_E (if available) applies:
0 = channel pair 0 = inputs 100_E +101_E

3 = channel pair 3 = inputs 106_E + 107_E
counter start value

FALSE = TRUE (edge):
PRESET_VALUE is loaded to COUNTER

TRUE: Counter ignores the input pulses
FALSE: Counter counts the input pulses

Description
Current counter value

TRUE: counter counts upwards in the last cycle

FALSE: counter counts not upwards in the last cycle

TRUE: counter counts downwards in the last cycle

FALSE: counter counts not downwards in the last cycle

529

28429

145

ExtendedController CR0232

PERIOD

370

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

[E For the extended side of the ExtendedControllers the FB name ends with '_E".

Symbol in CODESYS:

PERIOD
=1 INIT cCH—
—] CHANNEL FpP—
=1 PERIODS ET p=—

Description

2330
20677

PERIOD measures the frequency and period duration (cycle time) in [us] on the indicated channel
(allowed for all inputs). Maximum input frequency — data sheet.

This FB measures the frequency and the cycle time of the signal at the selected CHANNEL. To
calculate, all positive edges are evaluated and the average value is determined by means of the
number of indicated PERIODS.

In case of low frequencies there will be inaccuracies when using FREQUENCY (— p. 140). To avoid
this, PERIOD can be used. The cycle time is directly indicated in [us].

The maximum measuring range is 10 seconds.
33956

® NOTE

In case of higher frequencies (higher than those guaranteed by ifm) the following problems may occur:
e The switch-on and switch-off times of the outputs become more important.
¢ Undue heating of the components may occur.

The influences mentioned above depend on the components used in the individual case.
These possible influences cannot be exactly predicted.

(Do not use this function block on one input together with one of the following function blocks!
* FAST_COUNT (— p. 138)

* FREQUENCY (— p. 140)

* FREQUENCY_PERIOD (— p. 142)

* INC_ENCODER (— p. 144)

« PERIOD_RATIO (— p. 148)

« PHASE (— p. 150)

146

ExtendedController CR0232

Parameters of the inputs

Parameter

INIT

CHANNEL

PERIODS

Parameters of the outputs

Parameter

C

ET

Data type
BOOL

BYTE

BYTE

Data type
DWORD

REAL
TIME

Description

FALSE = TRUE (edge):
unit is initialised
FALSE: during further processing of the program

number of the fast input channel
0...15 for the inputs 100...115

For the function block xxx_E (if available) applies:

0...15 for the inputs 100_E...I115_E

Number of periods to be averaged (1...16)

0 : Outputs C and F are not updated
>16: is limited to 16
Description

Cycle time of the detected periods in [us]

allowed = 200...10 000 000 = 0xC8...0x989680 (= 10 seconds)

frequency of the input signal in [Hz]

time elapsed since the last rising edge on the input
(can be used for very slow signals)

2600

28503

147

ExtendedController CR0232

PERIOD_RATIO

364

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

[E For the extended side of the ExtendedControllers the FB name ends with '_E".

Symbol in CODESYS:

PERIOD_RATIO
=1 INIT cF—
=1 CHANNEL Fp—
—1 PERIODS ETp—
RATIO1000 —

Description

2332
20678

PERIOD_RATIO measures the frequency and the period duration (cycle time) in [us] over the
indicated periods on the indicated channel (allowed for all inputs). In addition, the mark-to-period ratio
is indicated in [%o]. Maximum input frequency — data sheet.

This FB measures the frequency and the cycle time of the signal at the selected CHANNEL. To
calculate, all positive edges are evaluated and the average value is determined by means of the
number of indicated PERIODS. In addition, the mark-to-period ratio is indicated in [%o].

For example: In case of a signal ratio of 25 ms high level and 75 ms low level the value RATIO1000 is
provided as 250 %o.

In case of low frequencies there will be inaccuracies when using FREQUENCY (— p. 140). To avoid
this, PERIOD_RATIO can be used. The cycle time is directly indicated in [us].

The maximum measuring range is 10 seconds.
33952

® NOTE

In case of higher frequencies (higher than those guaranteed by ifm) the following problems may occur:
e The switch-on and switch-off times of the outputs become more important.
e Undue heating of the components may occur.

The influences mentioned above depend on the components used in the individual case.
These possible influences cannot be exactly predicted.

(Do not use this function block on one input together with one of the following function blocks!
« FAST_COUNT (— p. 138)

* FREQUENCY (— p. 140)

* FREQUENCY_PERIOD (— p. 142)

* INC_ENCODER (— p. 144)

* PERIOD (— p. 146)

* PHASE (— p. 150)

148

ExtendedController CR0232

Parameters of the inputs

Parameter

INIT

CHANNEL

PERIODS

Parameters of the outputs

Parameter

C

F
ET

RATIO1000

Data type
BOOL

BYTE

BYTE

Data type
DWORD

REAL
TIME

WORD

2601

Description
FALSE = TRUE (edge):
unit is initialised
FALSE: during further processing of the program
number of the fast input channel
0...15 for the inputs 100...115
For the function block xxx_E (if available) applies:
0...15 for the inputs 100_E...I115_E

Number of periods to be averaged (1...16)
0 : Outputs C and F are not updated
>16: is limited to 16

28502

Description

Cycle time of the detected periods in [us]
allowed = 200...10 000 000 = 0xC8...0x989680 (= 10 seconds)

frequency of the input signal in [Hz]

Time passed since the last change of state on the input (can be used
in case of very slow signals)

Mark-to-space ratio in [%o]
permissible = 1...999 = 0x1...0x3E7
Preconditions:

« for measuring the interval

* pulse duration > 100 ps

« frequency < 5 kHz

149

ExtendedController CR0232

PHASE

358

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

[E For the extended side of the ExtendedControllers the FB name ends with '_E".

Symbol in CODESYS:

PHASE
=1 INIT cCH—
—] CHANNEL P
ET

Description

2338
20679

PHASE reads a pair of channels with fast inputs and compares the phase position of the signals.
Maximum input frequency — data sheet.

This FB compares a pair of channels with fast inputs so that the phase position of two signals towards
each other can be evaluated. An evaluation of the cycle period is possible even in the range of

seconds (max. 10 seconds).
33843

M NOTE

In case of higher frequencies (higher than those guaranteed by ifm) the following problems may occur:
e The switch-on and switch-off times of the outputs become more important.
¢ Undue heating of the components may occur.

The influences mentioned above depend on the components used in the individual case.
These possible influences cannot be exactly predicted.

@Do not use this function block on one input together with one of the following function blocks!
* FAST_COUNT (— p. 138)

* FREQUENCY (— p. 140)

* FREQUENCY_PERIOD (— p. 142)

* INC_ENCODER (— p. 144)

* PERIOD (— p. 146)

* PERIOD_RATIO (— p. 148)

150

ExtendedController CR0232

Parameters of the inputs

Parameter

INIT

CHANNEL

Parameters of the outputs

Parameter
C
2]

ET

Data type
BOOL

BYTE

Data type
DWORD
INT

TIME

2339

Description

TRUE (only for 1 cycle):
Function block and interface are initialised

FALSE: during further processing of the program

number of the input channel pair x
0 = channel pair 0 = inputs 100 + 101

;.= channel pair 7 = inputs 114 + 115
(0...x, value depends on the device, — data sheet)
0 = channel pair 0 = inputs 100_E + 101_E

7= channel pair 7 = inputs 114_E +115_E

28473

Description
period duration of the first input's signal of the channel pair in [ps]

angle of the phase shaft
valid measurement: 1...358 °

Time elapsed since the last positive edge at the second pulse input of
the channel pair

151

ExtendedController CR0232

5.2.11 Function elements: PWM functions

Content

OQUTPUT _BRIDGEccoioioieieeeeeeeeeeeeeeeee e 153
OQUTPUT _CURRENT ... 156
OUTPUT_CURRENT _CONTROL ..ceeiiiicieiiiiiee ettt e ettt e e e et e st e e e e e e s e annntaaeeaaeessennnnnnneaaeanan 157
YA 1, 101 160

Here, you will find ifm function blocks that allow you to operate the outputs with Pulse-Width
Modulation (PWM).

152

ExtendedController CR0232

OUTPUT_BRIDGE

2198
Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

[E For the extended side of the ExtendedControllers the FB name ends with '_E'. (not for CR0133)
Symbol in CODESYS:

OUTPUT_BRIDGE

INIT ACTUAL_CURRENT p—
CHANNEL
PWM_FREQUENCY
VALUE

DIRECTION
BRAKE_ASSISTANT
CHANGEOVER_TIME

Description
2203

OUTPUT_BRIDGE controls the H-bridges on the PWM channels.

By means of this FB the outputs can easily be used as H-bridge. To do so, two successive output
channels are combined to one bridge by means of a minus switching driver. If DIRECTION = FALSE,
for the first output the plus switching driver is triggered via a PWM signal and the minus switching
driver of the second output is switched.

® NOTE

When using the H-bridge current control is not supported.

Outputs which are operated in the PWM mode do not support any diagnostic functions and no ERROR
flags are set. This is due to the structure of the outputs.

The function OUT_OVERLOAD_PROTECTION is not active in this mode!
The flag in mode byte will be resetted by function OUTPUT_BRIDGE

(M 1f vALUE = 0, output will not be fully deactivated. In principle the output will be active during a timer
tick of the PWM timer (typically approx. 50 us).

» FB must be called in each cycle.

Assignment of the output channels usable as an H-bridge — data sheet.
15672

® NOTE

Is the measuring range for ACTUAL_CURRENT to be changed (to 4 A) at the function block
OUTPUT_BRIDGE during operation?

» For both related outputs, during the init phase, call the function block SET_OUTPUT_MODE
before calling the function block OUTPUT_BRIDGE!
CURRENT_RANGE =2 (for4 A)

153

ExtendedController CR0232

Principle of the H-bridge

Here you can see how a h-bridge can be run via PWM outputs at a ifm controller.
Basic circuit of a H-bridge with PWM control:

9990
16411

»45}?? e

T2 ;_,T4
Bo—||-l- -D—II—OD
D2 D4

T1 and T2 together are e.g. output QXx.
Also T3 and T4 belongs together, e.g. for Qy.
Therfore you only need two pins for connecting the DC motor.

Program example:

VAR

Initl: BCOOL:=TRUE;
CycleTime :DWORD;
MaxCycleTime :DWORD;
ResetMax:800L;

DonnloadID: CAN1_DOWNLOADID;

(AAA‘ALIJAJAAALIAAAAAALAAAA.AAAA‘!LA‘ALﬁAAlAAALlAAAA‘lLLAlAlAALA‘AI‘AAALAAAAAAI
CHANNEL = 1: Motor between QUT@L (Pinl7) and QUTE3(Pinl5)
CHANNEL = 2: Motor between OUTES (Pine3) and CUT11(Pines)

B e e e e)

H_BRIDGE: OUTPUT_BRIDCGE;

PkM_value: WORD := 10¢; (* current PWM value - VALUE = ©,..1006 *)
H_direction: BOOL; (* TRUE = counter clockwise; FALSE = clocknise =)
H_current: WORD; (* output current in m& *)

changeover_time: WORD := 508; (* Space time [ms] during which the motor is not triggereg

BB B R SR B R R

END_VAR

(> 18 ms) in the cese of a change of the retational direction.

=)

TE

H_BRIDGE

CUTPUT_BRIDGE

Init1-{INIT ACTUAL_CURRENT——H_current

1<|CHANNEL
250 PWM_FREQUENCY
PuM_value-VALUE

H_direction-|DIRECTICN

FALSE~BRAKE_ASSISTANT

ZBGBjCHANGEWER TIME

154

ExtendedController CR0232

Parameters of the inputs

Parameter Data type
INIT BOOL
CHANNEL BYTE
PWM_FREQUENCY WORD
VALUE WORD
DIRECTION BOOL
BRAKE_ASSISTANT BOOL
CHANGEOVER_TIME WORD
Parameters of the outputs

Parameter Data type
ACTUAL_CURRENT WORD

Description

TRUE (only for 1 cycle):
Function block is initialised

FALSE: during further processing of the program

Name of output pair:
1 =bridge 1 at Q01 + Q03
2 = bridge 2 at Q09 + Q11

For the function block xxx_E (if available) applies:
1 =bridge 1at Q01_E + Q03_E
2=bridge 2at Q09_E + Q11_E

PWM frequency [Hz] for load on output

> function block limited to value of 20...2 000 = 0x0014...0x07D0
Changes of the PWM frequencies during operation:

only permissible in the range 40...2 000 Hz.

PWM value (mark-to-space ratio) in [%o]
allowed = 0...1 000 = 0x0000...0x03E8
Values > 1 000 are regarded as = 1 000

Direction of rotation of the motor:

TRUE: Counter-clockwise (ccw):
Bridge 1: current flow Q01(_E) <= Q03(_E)
Bridge 2: current flow Q09(_E) <= Q11(_E)
FALSE: Clockwise (cw):

Bridge 1: current flow Q01(_E) = Q03(_
Bridge 2: current flow Q09(_E) = Q11(_

)
)

mm

TRUE: When changing the rotational direction:
the function block switches both outputs to ground
to brake the motor
as long as CHANGEOVER _TIME is running.

FALSE: function element is not executed

2204

Space time in [ms] during which the motor is not triggered in the case

of a change of the rotational direction
(> cycle time, at least 10 ms)
values < 10 ms work as = 10 ms

Description

Output current in [mA]

2205

155

ExtendedController CR0232

OUTPUT_CURRENT

382
Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

[E For the extended side of the ExtendedControllers the FB name ends with '_E'. (not for CR0133)

Symbol in CODESYS:

OUTPUT_CURRENT

=1 ENABLE ACTUAL_CURRENT p—
— OUTPUT_CHANNEL
= DITHER_RELATED

Description
28839

OUTPUT_CURRENT handles the current measurement in conjunction with an active PWM channel.
The FB provides the current output current if the outputs are used as PWM outputs or as plus

switching. The current measurement is carried out in the device, i.e. no external measuring resistors
are required.

Parameters of the inputs
17894

Parameter Data type Description

ENABLE BOOL TRUE: execute this function element

FALSE: unitis not executed
> Function block inputs are not active
> Function block outputs are not specified

OUTPUT_CHANNEL BYTE Number of the current-controlled output channel (0...15)
0...15 for the outputs Q00...Q15

For the function block xxx_E (if available) applies:
0...15 for the outputs Q00_E...Q15_E

DITHER_RELATED BOOL Current is determined as an average value via...

TRUE: one dither period
FALSE: one PWM period

Parameters of the outputs
28492

Parameter Data type Description

ACTUAL_CURRENT WORD Output current in [mA]

156

ExtendedController CR0232

OUTPUT_CURRENT_CONTROL

2196
Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

[E For the extended side of the ExtendedControllers the FB name ends with '_E'. (not for CR0133)

Symbol in CODESYS:

OUTPUT_CURRENT_CONTROL

ENABLE PWM_RATIO —
INIT
OUTPUT_CHANNEL
DESIRED_CURRENT
PWM_FREQUENCY
DITHER_FREQUENCY
DITHER_VALUE

KP

Ki

Description

2200
OUTPUT_CURRENT_CONTROL operates as current controller for the PWM outputs.
The setting parameters Kl and KP represent the I-component and the P-component of the controller. It
is recommended to set KI=50 and KP=50 as start values so as to determine the best setting of the
controller. Depending on the requested controller behaviour the values can gradually be incremented
(controller is stronger / faster) or decremented (controller is weaker / slower).

At the preset value DESIRED_CURRENT=0 the output is controlled down to 0 mA within about
100 ms with the setting parameters being ignored.

Depending on the controller hardware used, a different teach performance has to be noted.

] If parameters are changed during running, than the following can occur:
° * the control possibly can skip completely or
* the control can need a longer time to tune the given value.
» Therefore validate the measured current and restart the control if necessary.

157

ExtendedController CR0232

©

| 2

v

A\

vVYyvyy

NOTE

When defining the parameter DITHER_VALUE make sure that the resulting PWM ratio in the
operating range of the loop control remains between 0...1000 %:

* PWM ratio + DITHER_VALUE < 1000 %o and

* PWM ratio - DITHER_VALUE > 0 %e.
Outside this permissible area, DITHER_VALUE is internally reduced to the maximum possible
value temporarily, so that the average value of the PWM ratio corresponds to the required value.

When the dither is activated, changes to PWM_FREQUENCY, DITHER_VALUE and
DITHER_FREQUENCY become effective only when the current dither period has been
completed.

Change the parameters only during operation when INIT=FALSE. The new parameters will not be
adopted before the current PWM period has elapsed.

Changes of the PWM frequencies during operation:
only permissible in the range 40...2 000 Hz.

If the current indicated in the parameter DESIRED_CURRENT cannot be reached because the
PWM ratio is already at 100 %, this is indicated by the system variable ERROR_CONTROL_Qx.

If KI = 0, there is no loop control.

If during the loop control a PWM_RATIO = 0 results, the output is not deactivated completely. In
principle the output will be active during a timer tick of the PWM timer (typically approx. 50 ps).

The initialisation of the FB (INIT = TRUE) may only be carried out once per PLC cycle.
Calling this FB with an output configured as B(L) is not permitted.
An output defined as PWM output can no longer be used as binary output afterwards.

If the flowing current in the switched-on condition exceeds the measuring range, control will no
longer be possible because the AD converter is at the end of the measuring range and therefore
provides wrong values (the max. value).

158

ExtendedController CR0232

Parameters of the inputs

Parameter

ENABLE

INIT

OUTPUT_CHANNEL

DESIRED_CURRENT

PWM_FREQUENCY

DITHER_FREQUENCY

DITHER_VALUE

KP
K

Parameters of the outputs

Parameter

PWM_RATIO

Data type
BOOL

BOOL

BYTE

WORD

WORD

WORD

WORD

BYTE
BYTE

Data type
WORD

32522

Description

TRUE: execute this function element

FALSE: unitis not executed
> control continues with the latest valid parameters

TRUE (only for 1 cycle):
Function block is initialised
FALSE: during further processing of the program
Number of the current-controlled output channel (0...15)
0...15 for the outputs Q00...Q15
For the function block xxx_E (if available) applies:
0...15 for the outputs Q00_E...Q15_E

Desired current value of the output in [mA]
allowed = 0...2000/0...4 000
(dependent on output and configuration)

PWM frequency [Hz] for load on output

> function block limited to value of 20...2 000 = 0x0014...0x07D0
Changes of the PWM frequencies during operation:

only permissible in the range 40...2 000 Hz.

dither frequency in [Hz]

value range = 0...FREQUENCY / 2
FREQUENCY / DITHER_FREQUENCY must be even-numbered!
The FB increases all other values to the next matching value.

peak-to-peak value of the dither in [Jo]
permissible values = 0...1 000 = 0000...03E8

proportional component of the output signal

Integral component of the output signal
if KI =0 no rule

Description

For monitoring purposes: display PWM pulse ratio 0...999 %

2202

159

ExtendedController CR0232

PWM1000

326
Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

[E For the extended side of the ExtendedControllers the FB name ends with '_E'. (not for CR0133)

Symbol in CODESYS:

PWM1000

INIT

FREQUENCY
CHANNEL

VALUE

CHANGE
DITHER_VALUE
DITHER_FREQUENCY

Description
2311

PWM1000 handles the initialisation and parameter setting of the PWM outputs.
The FB enables a simple use of the PWM function in the device. For each channel an own PWM
frequency, the mark-to-period ratio and the dither can be set.
The PWM frequency FREQUENCY can be directly indicated in [Hz] and the mark-to-period ratio
VALUE in steps of 1 %e.
If VALUE = 0, output will not be fully deactivated. In principle the output will be active during a timer
tick of the PWM timer (typically approx. 50 us).
» When defining the parameter DITHER_VALUE make sure that the resulting PWM ratio in the
operating range of the loop control remains between 0...1000 %:
* PWM ratio + DITHER_VALUE < 1000 %o and
* PWM ratio - DITHER_VALUE > 0 %eo.
Outside this permissible area, DITHER_VALUE is internally reduced to the maximum possible
value temporarily, so that the average value of the PWM ratio corresponds to the required value.
» Activate the function block permanently!

» Calling this FB with an output configured as B(L) is not permitted.

® NOTE

The function change of a channel defined as PWM function during operation is not possible. The PWM
function remains set until a hardware reset is carried out on the controller = power off and on again.

For high PWM frequencies differences can occur between the set ratio and the ratio on the output due

to the system.

» Change the parameters only during operation when INIT=FALSE. The new parameters will not be
adopted before the current PWM period has elapsed.

» Changes of the PWM frequencies during operation:
only permissible in the range 40...2 000 Hz.

Changes during the runtime:

Always when the input CHANGE is set to TRUE, the FB adopts the value ...
* FREQUENCY after the current PWM period

* VALUE after the current PWM period

* DITHER_VALUE after the current dither period

* DITHER_FREQUENCY after the current dither period

160

ExtendedController CR0232

Parameters of the inputs

Parameter

INIT

FREQUENCY

CHANNEL

VALUE

CHANGE

DITHER_VALUE

DITHER_FREQUENCY

Data type
BOOL

WORD

BYTE

WORD

BOOL

WORD

WORD

Description

TRUE (only 1 cycle):
Function block is initialised
Adopting new value from FREQUENCY

FALSE: during further processing of the program

PWM frequency in [Hz]

> function block limited to value of 20...2 000 = 0x0014...0x07D0
Changes of the PWM frequencies during operation:

only permissible in the range 40...2 000 Hz.

Number of the PWM output channel
0...15 for the outputs Q00...Q15

For the function block xxx_E (if available) applies:
0...15 for the outputs Q00_E...Q15_E

PWM value (mark-to-space ratio) in [%o]
allowed = 0...1 000 = 0x0000...0x03E8
Values > 1 000 are regarded as = 1 000

TRUE: adoption of the new value of ...

+ FREQUENCY: after the current PWM period

+ VALUE: after the current PWM period

+ DITHER_VALUE: after the current dither period

+ DITHER_FREQUENCY: after the current dither period

2312

FALSE: the changed PWM value has no influence on the output

peak-to-peak value of the dither in [Jo]
permissible values = 0...1 000 = 0000...03E8

dither frequency in [Hz]
value range = 0...FREQUENCY / 2

FREQUENCY / DITHER_FREQUENCY must be even-numbered!

The FB increases all other values to the next matching value.

161

ExtendedController CR0232

5.2.12 Function elements: hydraulic control

Content
(1@]I i @] O L O PSPt 163
B0 S N [S O RSP 165
B8 D 2 S I [S PP 168
8O D S N [PSPPSR 172
NORM_HYDRAULIC ...ttt e e e e et et e e e e e e et e ta bt e e e e e e eeabaan e e e e e e eeebannaeeeaaes 175
13760
The library ifm_HYDRAULIC 32bit Vxxyyzz.Lib contains the following function blocks:
CONTROL_OCC (— p. 163) OCC = Output Current Control
Scales the input value [WORD] to an indicated current range
JOYSTICK_O (— p. 165) Scales signals [INT] from a joystick to clearly defined characteristic curves, standardised to 0...
1000
JOYSTICK_1 (— p. 168) Scales signals [INT] from a joystick D standardised to 0... 1000
JOYSTICK_2 (— p. 172) Scales signals [INT] from a joystick to a configurable characteristic curve; free selection of the
standardisation
NORM_HYDRAULIC (— p. 175) Normalises a value [DINT] within defined limits to a value with new limits

The following function blocks are needed from the library UTIL.Lib (in the CODESYS package):

* RAMP_INT

* CHARCURVE

These function blocks are automatically called and configured by the function blocks of the hydraulics
library.

The following function blocks are needed from the library:ifm_CR0232_Vxxyyzz.LIB
OUTPUT_CURRENT (— p. 156) Measures the current (average via dither period) on an output channel
OUTPUT_CURRENT_CONTROL (— p. 157) Current controller for a PWMi output channel

These function blocks are automatically called and configured by the function blocks of the hydraulics
library.

162

ExtendedController CR0232

CONTROL_OCC

2735
Unit type = function block (FB)
Unit is contained in the libraryifm_HYDRAULIC_32bit_Vxxyyzz.Lib

Symbol in CODESYS:

CONTROL_OCC

ENABLE DESIRED_CURRENT
INIT ACTUAL_CURRENT
R_RAMP BREAK
F_RAMP SHORT
TIMEBASE

X

XH

XL

MAX_CURRENT

MIN_CURRENT

TOLERANCE

CHANNEL

PWM_FREQUENCY

DITHER_FREQUENCY

DITHER_VALUE

KP

Ki

Description
2737

CONTROL_OCC scales the input value X to a specified current range.

Each instance of the FB is called once in each PLC cycle.

This function block uses the following function blocks from the library:ifm_CR0232_Vxxyyzz.LIB
* OUTPUT_CURRENT_CONTROL (— p. 157)

* OUTPUT_CURRENT (— p. 156)

The controller controls on the basis of the cycle period of the PWM signal.

The setting parameters Kl and KP represent the integral and the proportional component of the
controller. It is recommended to set KI=50 and KP=50 as start values so as to determine the best
setting of the controller.

» Increasing the values for Kl and / or KP: = controller becomes more sensitive / faster
Decreasing the values for Kl and / or KP: = controller becomes less sensitive / slower

> Atthe output DESIRED_CURRENT=0 the output is immediately switched to 0 mA and is not
adjusted downward to O mA in accordance with the set parameters.

The controller has a fast compensation mechanism for voltage drops of the supply voltage. In addition
to the controller behaviour of the controller and on the basis of the voltage drop, the ratio of the PWM
is increased such that the controller reaches as quickly as possible the desired value.

(& The input X of CONTROL_OCC should be supplied by the output of the JOYSTICK FBs.

163

ExtendedController CR0232

Parameters of the inputs
2739

Parameter Data type Description

ENABLE BOOL TRUE: execute this function element

FALSE: unitis not executed
> Function block inputs are not active
> Function block outputs are not specified

INIT BOOL FALSE = TRUE (edge):
unit is initialised
FALSE: during further processing of the program

R_RAMP INT Rising edge of the ramp in [increments/PLC cycle]
0=no ramp

F_RAMP INT Falling edge of the ramp in [increments/PLC cycle]
0 =no ramp

TIMEBASE TIME Reference for rising and falling edge of the ramp:

t#0s = rising/falling edge in [increments/PLC cycle]
Fast controllers have very short cycle times!
otherwise = rising/falling edge in [increments/TIMEBASE]

X WORD input value

XH WORD Upper limit of input value range [increments]
XL WORD Lower limit of input value range [increments]
MAX_CURRENT WORD Max. valve current in [mA]

MIN_CURRENT WORD Min. valve current in [mA]

TOLERANCE BYTE Tolerance for min. valve current in [increments]

When the tolerance is exceeded, jump to MIN_CURRENT is effected

CHANNEL BYTE Number of the current-controlled output channel
0...15 for the outputs Q00...Q15

For the function block xxx_E (if available) applies:
0...15 for the outputs Q00_E...Q15_E

PWM_FREQUENCY WORD PWM frequency [Hz] for load on input

DITHER_FREQUENCY WORD dither frequency in [Hz]

value range = 0...FREQUENCY / 2
FREQUENCY / DITHER_FREQUENCY must be even-numbered!
The FB increases all other values to the next matching value.

DITHER_VALUE BYTE peak-to-peak value of the dither in [%]
permissible values = 0...100 = 0x00...0x64

KP BYTE proportional component of the output signal
Kl BYTE integral component of the output signal

(2] For KP, Kl applies: recommended start value = 50

Parameters of the outputs

27757
Parameter Data type Description
DESIRED_CURRENT WORD Desired current value in [mA] for OCC
(for monitoring purposes)
ACTUAL_CURRENT WORD Output current in [mA]
BREAK BOOL Error: cable interrupted at output
SHORT BOOL Error: short circuit in cable at output

164

ExtendedController CR0232

JOYSTICK_O

Unit type = function block (FB)
Unit is contained in the libraryifm_hydraulic_32bit_Vxxyyzz.Lib

Symbol in CODESYS:

JOYSTICK_0
—]X OUT1 —
—] XH_POS ouT2 |—
— XL_POS ouT3 |—
— XH_NEG WRONG_MODE |—
— XL_NEG ERR1 |—
— MODE ERR2 |—

Description

6250

27776

JOYSTICK 0 scales signals from a joystick to clearly defined characteristic curves, standardised

to 0...1000.

For this FB the characteristic curve values are specified (— figures):

e Rising edge of the ramp = 5 increments/PLC cycle
Fast Controllers have a very short cycle time!

e Falling edge of the ramp = no ramp

The parameters XL_POS (XL+), XH_POS (XH+), XL_NEG
(XL-) and XH_NEG (XH-) are used to evaluate the joystick
movements only in the requested area.

The values for the positive and negative area may be different.

The values for XL_NEG and XH_NEG are negative here.

Mode O:
characteristic curve linear for the range XL to XH

ouT
XH- XL-
| |] |
I 1 1 1
XL+ XH+
OouT ,
100 % ——---------=m-mmmmmeme s
> X
100 %

165

ExtendedController CR0232

Mode 1:
Characteristic curve linear with dead band

Values fixed to:

Dead band:
0...10% of 1000 increments

Mode 2:
2-step linear characteristic curve with dead band

Values fixed to:

Dead band:

0...10% of 1000 increments
Step:

X =50 % of 1000 increments
Y = 20 % of 1000 increments

Characteristic curve mode 3:
Curve rising (line is fixed)

166

ouT
100 % —

ouTt
100 % —

20 %

ouT
100 % —

A
| [
10 % 100 %
A
| | | -
i 1 —>X
10 % 50 % 100 %
A
> x
100 %

ExtendedController CR0232

Parameters of the inputs

Parameter Data type Description

X INT Input value [increments]

XH_POS INT Max. preset value positive direction [increments]
(negative values also permissible)

XL_POS INT Min. preset value positive direction [increments]
(negative values also permissible)

XH_NEG INT Max. preset value negative direction [increments]
(negative values also permissible)

XL_NEG INT Min. preset value negative direction [increments]
(negative values also permissible)

MODE BYTE Mode selection characteristic curve:
0 = linear

(X|OUT = 0[0 .. 1000|1000)

1 = linear with dead band
(XJOUT =0]0 ... 100]0 ... 1000|1000)

2 = 2-step linear with dead band
(XJOUT =0]0 ... 1000 ... 500|200 ... 1000{1000)

3 = curve rising (line is fixed)

Parameters of the outputs

Parameter Data type Description
OUT1 WORD Standardised output value: 0...1000 increments
e.g. for valve left
ouT2 WORD Standardised output value: 0...1000 increments
e.g. for valve right
OuT3 INT Standardised output value -1000...0...1000 increments
e.g. for valve on output module (e.g. CR2011 or CR2031)
WRONG_MODE BOOL Error: invalid mode
ERR1 BYTE Error code for rising edge

(referred to the internally used function blocks CHARCURVE and
RAMP_INT from util.1lib)
(possible messages — following table)

ERR2 BYTE Error code for falling edge
(referred to the internally used function blocks CHARCURVE and
RAMP_INT from util.1lib)
(possible messages — following table)

Possible results for ERR1 and ERR2:

Value Description
dec | hex
0 00 no error
1 01 Error in array: wrong sequence
2 02 Error: Input value IN is not contained in value range of array
4 04 Error: invalid number N for array

27685

27750

167

ExtendedController CR0232

JOYSTICK_1

Unit type = function block (FB)
Unit is contained in the libraryifm_hydraulic_32bit_Vxxyyzz.Lib

Symbol in CODESYS:

CHANGE_POINT_X
CHANGE_POINT_Y

JOYSTICK_1
—{x ouT1 |—
— XH_POS ouT2 |—
—]{xL_POS ouT3 |—
—] XH_NEG WRONG_MODE |—
—]{XL_NEG ERR1 |—
—{R_RAMP ERR2 |—
—F_RAMP
=i TIMEBASE
—MODE
— DEAD_BAND

Description

6255

27775

JOYSTICK 1 scales signals from a joystick to configurable characteristic curves, standardised to

0...1000.

For this FB the characteristic curve values can be configured (— figures):

Mode O:
Linear characteristic curve

100 % = 1000 increments

Mode 1:
Characteristic curve linear with dead band

Value for the dead band (DB) can be set in % of 1000
increments

100 % = 1000 increments
DB = Dead_Band

168

ouT,
100 % —

ouTt
100 % —

P Y N ——

10

DB 100 %

ExtendedController CR0232

Mode 2:
2-step linear characteristic curve with dead band

Values can be configured to:

Dead band:

0...DB in % of 1000 increments
Step:

X = CPX in % of 1000 increments
Y= CPY in % of 1000 increments

100 % = 1000 increments
DB = Dead_Band

CPX = Change_Point_X
CPY = Change_Point_Y

Characteristic curve mode 3:
Curve rising (line is fixed)

ouTt
100 % —

CPY —

ouT
100 % —

A
| | [
i 1 —>X
DB CPX 100 %
A
> x
100 %

169

ExtendedController CR0232

Parameters of the inputs

Parameter

X

XH_POS
XL_POS
XH_NEG
XL_NEG
R_RAMP
F_RAMP

TIMEBASE

MODE

DEAD_BAND
CHANGE_POINT_X

CHANGE_POINT_Y

170

Data type
INT

INT

INT

INT

INT

INT

INT

TIME

BYTE

BYTE

BYTE

BYTE

Description

Input value [increments]

Max. preset value positive direction [increments]
(negative values also permissible)

Min. preset value positive direction [increments]
(negative values also permissible)

Max. preset value negative direction [increments]
(negative values also permissible)

Min. preset value negative direction [increments]
(negative values also permissible)

Rising edge of the ramp in [increments/PLC cycle]
0 =no ramp

Falling edge of the ramp in [increments/PLC cycle]
0 =no ramp
Reference for rising and falling edge of the ramp:
t#0s = rising/falling edge in [increments/PLC cycle]
Fast controllers have very short cycle times!
otherwise = rising/falling edge in [increments/TIMEBASE]

Mode selection characteristic curve:
0 = linear
(X|OUT =0]0 ... 1000]1000)

1 = linear with dead band
(X|OUT =0l0 ... DBJ0 ... 1000]1000)

2 = 2-step linear with dead band
(X|OUT =010 ... DBJ0 ... CPX|CPY ... 1000|1000)

3 = curve rising (line is fixed)

Adjustable dead band
in [% of 1000 increments]

For mode 2: ramp step, value for X
in [% of 1000 increments]

For mode 2: ramp step, value for Y
in [% of 1000 increments]

27650

ExtendedController CR0232

Parameters of the outputs

Parameter Data type
OuT1 WORD
ouT2 WORD
OuT3 INT
WRONG_MODE BOOL
ERR1 BYTE
ERR2 BYTE

Possible results for ERR1 and ERR2:

Description

Standardised output value: 0...1000 increments
e.g. for valve left

Standardised output value: 0...1000 increments
e.g. for valve right

Standardised output value -1000...0...1000 increments
e.g. for valve on output module (e.g. CR2011 or CR2031)

Error: invalid mode

Error code for rising edge

(referred to the internally used function blocks CHARCURVE and
RAMP_INT from util.1lib)

(possible messages — following table)

Error code for falling edge

(referred to the internally used function blocks CHARCURVE and
RAMP_INT from util.1ib)

(possible messages — following table)

Value Description
dec | hex
0 00 no error
1 01 Error in array: wrong sequence
2 02 Error: Input value IN is not contained in value range of array
4 04 Error: invalid number N for array

27750

171

ExtendedController CR0232

JOYSTICK_2

6258
Unit type = function block (FB)
Unit is contained in the libraryifm_hydraulic_32bit_Vxxyyzz.Lib

Symbol in CODESYS:

JOYSTICK 2
—{x ouT1 |—
—]{xH_Pos OuT2 |—
—{xL_Pos ouT3 |—
—{XH_NEG ERR1 |—
—{XL_NEG ERR2 |—
— R_RAMP

—F_RAMP

—] TIMEBASE

—] VARIABLE_GAIN

—{N_POINT

Description

27778

JOYSTICK 2 scales the signals from a joystick to a configurable characteristic curve. Free selection of
the standardisation.

For this FB, the characteristic curve is freely configurable (— figure):

OUT 4,

100 % —f— === === -soemne -

Characteristic curve freely configurable

100 %

172

ExtendedController CR0232

Parameters of the inputs

27739

Parameter Data type Description

X INT Input value [increments]

XH_POS INT Max. preset value positive direction [increments]
(negative values also permissible)

XL_POS INT Min. preset value positive direction [increments]
(negative values also permissible)

XH_NEG INT Max. preset value negative direction [increments]
(negative values also permissible)

XL_NEG INT Min. preset value negative direction [increments]
(negative values also permissible)

R_RAMP INT Rising edge of the ramp in [increments/PLC cycle]
0 =no ramp

F_RAMP INT Falling edge of the ramp in [increments/PLC cycle]
0 =no ramp

TIMEBASE TIME Reference for rising and falling edge of the ramp:

t#0s = rising/falling edge in [increments/PLC cycle]
Fast controllers have very short cycle times!
otherwise = rising/falling edge in [increments/TIMEBASE]

VARIABLE_GAIN ARRAY [0..10] OF POINT Pairs of values describing the curve
The first pairs of values indicated in N_POINT are used. n = 2...11
Example: 9 pairs of values declared as variable VALUES:
VALUES : ARRAY [0..10] OF POINT :=
(X:=0,Y:=0), (X:=200,Y:=0), (X:=300,Y:=50),
(X:=400,Y:=100), (X:=700,Y:=500),
(X:=1000,Y:=900), (X:=1100,Y:=950),
(X:=1200,Y:=1000), (X:=1400,Y:=10850);
There may be blanks between the values.

N_POINT BYTE Number of points (pairs of values in VARIABLE_GAIN) by which the
curve characteristic is defined: n = 2...11

173

ExtendedController CR0232

Parameters of the outputs

Parameter

ouT1

0ouT2

OuUT3

ERR1

ERR2

Data type Description

WORD Standardised output value: 0...1000 increments
e.g. for valve left

WORD Standardised output value: 0...1000 increments
e.g. for valve right

INT Standardised output value -1000...0...1000 increments
e.g. for valve on output module (e.g. CR2011 or CR2031)

BYTE Error code for rising edge
(referred to the internally used function blocks CHARCURVE and
RAMP_INT from util.1lib)
(possible messages — following table)

BYTE Error code for falling edge
(referred to the internally used function blocks CHARCURVE and
RAMP_INT from util.1lib)
(possible messages — following table)

Possible results for ERR1 and ERR2:

Value
dec | hex

A N B O

174

00
01
02
04

Description

no error
Error in array: wrong sequence
Error: Input value IN is not contained in value range of array

Error: invalid number N for array

27731

ExtendedController CR0232

NORM_HYDRAULIC

Unit type = function block (FB)

Unit is contained in the libraryifm_hydraulic_32bit_Vxxyyzz.Lib

Symbol in CODESYS:

X

XH
XL
YH
YL

NORM_HYDRAULIC

Y
X_OUT_OF_RANGE

Description

394

27771

NORM_HYDRAULIC standardises input values with fixed limits to values with new limits.
(£] This function block corresponds to NORM_DINT from the CODESYS library UTIL.Lib.

The function block standardises a value of type DINT, which is within the limits of XH and XL, to an
output value within the limits of YH and YL.

Due to rounding errors deviations from the standardised value of 1 may occur. If the limits (XH/XL or
YH/YL) are indicated in inversed form, standardisation is also inverted.

If X is outside the limits of XL...XH, the error message will be X_OUT_OF_RANGE = TRUE.

Typical characteristic curve of a hydraulic valve:
The oil flow will not start before 20% of the coil current has

been reached.

At first the oil flow is not linear.

Characteristics of the function block

Q
[Vmin] A
100 % ——----mmmmmmmm oo, :
| >
20 % 100 % [MA]
[
[mA] A
YH ey
i —>Q
XL XH ﬂ/nun]

175

ExtendedController CR0232

Parameters of the inputs

Parameter Data type Description

X DINT current input value

XH DINT Max. input value [increments]

XL DINT Min. input value [increments]

YH DINT Max. output value [increments], e.g.:

valve current [mA] / flow [l/min]

YL DINT Min. output value [increments], e.g.:

valve current [mA)], flow [l/min]

Parameters of the outputs

Parameter Data type Description
Y DINT output value
X_OUT_OF_RANGE BOOL Error: X is beyond the limits of XH and XL

Example: NORM_HYDRAULIC

Parameter Case 1
Upper limit value input XH 100
Lower limit value input XL 0
Upper limit value output YH 2000
Lower limit value output YL 0
Non standardised value X 20
Standardised value Y 400
e Casel:

Input with relatively coarse resolution.
Output with high resolution.
1 X increment results in 20 Y increments.

e Case2:
Input with relatively coarse resolution.
Output with high resolution.
1 X increment results in 20 Y increments.
Output signal is inverted as compared to the input signal.

e Case3:
Input with high resolution.
Output with relatively coarse resolution.
20 X increments result in 1 Y increment.

176

Case 2
100

2000
20
1600

27682

27741

27881

Case 3
2000

100

20

ExtendedController CR0232

5.2.13 Function elements: controllers

Content

Setting rule fOr @& CONIOIIETueiie et e st e e et e e e sbe e e e e nanns 177
DI P PP PR PPPRP P 178
| PP PPRP 179
PP PPRP 181
I PP PP PPRP 183

27839

The section below describes in detail the units that are provided for set-up by software controllers in
the ecomatmobile device. The units can also be used as basis for the development of your own
control functions.

Setting rule for a controller

28400
For controlled systems, whose time constants are unknown the setting procedure to Ziegler and
Nickols in a closed control loop is of advantage.
Setting control

28405

At the beginning the controlling system is operated as a purely P-controlling system. In this respect the
derivative time Tv is set to 0 and the reset time Tn to a very high value (ideally to «) for a slow system.
For a fast controlled system a small Tn should be selected.

Afterwards the gain KP is increased until the control deviation and the adjustment deviation perform
steady oscillation at a constant amplitude at KP = KPcriticat. Then the stability limit has been reached.

Then the time period Teritcal Of the steady oscillation has to be determined.
Add a differential component only if necessary.

Tv should be approx. 2...10 times smaller than Tn.

KP should be equal to KD.

Idealised setting of the controlled system:

Control unit KP =KD TN TV
P 2.0 * KPgiitical — —
Pl 2.2 * KPgitical 0.83 * Tertical —

PID 1.7 - KPcrit\caI 0.50 « Tcri!ical 0.125 - Tcri!ical

@ For this setting process it has to be noted that the controlled system is not harmed by the
oscillation generated. For sensitive controlled systems KP must only be increased to a value at which
no oscillation occurs.

Damping of overshoot
27829

To dampen overshoot PT1 (— p. 183) (low pass) can be used. In this respect the preset value XS is
damped by the PT1 link before it is supplied to the controller function.

The setting variable T1 should be approx. 4...5 times greater than TN of the controller.

177

ExtendedController CR0232

DELAY

27826
Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

DELAY

Description
27770

DELAY delays the output of the input value by the time T (dead-time element).
A
y

v

t=0 t

Figure: Time characteristics of DELAY

The dead time is influenced by the duration of the PLC cycle.

The dead time my not exceed 100 « PLC cycle time (memory limit!).

In case a longer delay is set, the resolution of the values at the output of the FB will be poorer, which
may cause that short value changes will be lost.

0) To ensure that the FB works correctly: FB must be called in each cycle.

Parameters of the inputs
2615

Parameter Data type Description
X REAL Input value
T TIME Delay time (dead time)

allowed: 0...100 « cycle time

Parameters of the outputs
2616

Parameter Data type Description

Y REAL Input value, delayed by the time T

178

ExtendedController CR0232

PID1

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

PID1

X Y
XS OVERFLOW
KP

Ki

KD

Y_MAX

RESET

Description

PID1 handles a PID controller.

19235

19237

The change of the manipulated variable of a PID controller has a proportional, integral and differential

component.

OVERFLOW = TRUE is signalled when the 'l' part reaches an internal limitation because a control
deviation could not be corrected.
OVERFLOW remains TRUE as long as the limitation is active.

Parameters of the inputs

Parameter Data type Description

X REAL Input value

XS REAL preset value

KP REAL Proportional component of the output signal
(only positive values permissible)

Kl REAL Integral component of the output signal
(only positive values permissible)

KD REAL Differential component of the output signal
(only positive values permissible)

Y_MAX REAL maximum control value

RESET BOOL TRUE: reset the function element

FALSE: function element is not executed

Parameters of the outputs

Parameter Data type Description
Y REAL Output value
OVERFLOW BOOL TRUE: Overflow of the data buffer = loss of data!

FALSE: Data buffer is without data loss

19238

19241

179

ExtendedController CR0232

Recommended settings

| 2

180

Start values:
KP =0
KD =0

Adapt Kl to the process.

Then modify KP and Kl gradually.

19242

ExtendedController CR0232

PID2

344
Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

PID2

XS
XMAX
KP

Ki

TN

KD

RESET

Description
6262

PID2 handles a PID controller.

The change of the manipulated variable of a PID controller has a proportional, integral and differential
component. The manipulated variable changes first by an amount which depends on the rate of
change of the input value (D component). After the end of the derivative action time TV the
manipulated variable returns to the value corresponding to the proportional component and changes in
accordance with the reset time TN.

(& The manipulated variable Y is already standardised to PWM1000 (— p. 160).

Rules:
* Negative values for KP, Kl and KD are not permitted.
* In case of TN =0, the | value is not calculated
* In case of XS > XMAX, XS is limited to XMAX.
* In case of X > XMAX, Y is set to 0.
« If X > XS, the manipulated variable is increased.
« If X < XS, the manipulated variable is reduced.

A reference variable is internally added to the manipulated variable.
Y =Y + 65536 — (XS / XMAX + 65 536).

The manipulated variable Y has the following time characteristics.

A
y
KD

<

KI* X

KP* X

v

~T, T t

\Z N

Figure: Typical step response of a PID controller

181

ExtendedController CR0232

Parameters of the inputs

Parameter
X

XS

XMAX

KP

K

N
KD

v
RESET

Parameters of the outputs

Parameter

Y

Recommended setting

Data type
WORD
WORD
WORD
REAL

REAL

TIME
REAL

TIME
BOOL

Data type
WORD

12963

Description

input value

preset value
maximum preset value

Proportional component of the output signal
(only positive values permissible)

Integral component of the output signal
(only positive values permissible)

integral action time (integral component)

Differential component of the output signal
(only positive values permissible)

derivative action time (differential component)

TRUE: reset the function element
FALSE: function element is not executed

27743

Description

Manipulated variable (0...1000 %o)

27708

» Select TN according to the time characteristics of the system:

fast system = small TN
slow system = large TN

» Slowly increment KP gradually, up to a value at which still definitely no fluctuation will occur.

v

Readjust TN if necessary.

» Add differential component only if necessary:

Select a TV value approx. 2...10 times smaller than TN.

Select a KD value more or less similar to KP.

Note that the maximum control deviation is + 127. For good control characteristics this range should
not be exceeded, but it should be exploited to the best possible extent.

182

ExtendedController CR0232

PT1

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

PT1

Description

PT1 handles a controlled system with a first-order time delay.
This FB is a proportional controlled system with a time delay. It is for example used for generating

ramps when using the PWM FBs.

28577

27819

@ The output of the FB can become instable if T1 is shorter than the SPS cycle time.

The output variable Y of the low-pass filter has the following time characteristics (unit step):

A
Y‘L”

v

t=0 t

Figure: Time characteristics of PT1

Parameters of the inputs

Parameter Data type
X DINT
T TIME

Parameters of the outputs

Parameter Data type

Y DINT

Description
current input value

Delay time (time constant)

Description

output value

2618

2619

183

ExtendedController CR0232

5.2.14 Function elements: software reset

Content
S Ol I] i

Using this FB the control can be restarted via an order in the application program.

184

ExtendedController CR0232

SOFTRESET

27714
Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

SOFTRESET
= ENABLE

Description
28134

SOFTRESET leads to a complete reboot of the device.

The FB can for example be used in conjunction with CANopen if a node reset is to be carried out. FB
SOFTRESET executes an immediate reboot of the controller. The current cycle is not completed.

Before reboot, the retain variables are stored.
The reboot is logged in the error memory.

() in case of active communication: the long reset period must be taken into account because
otherwise guarding errors will be signalled.

Parameters of the inputs
27689

Parameter Data type Description

ENABLE BOOL TRUE: execute this function element

FALSE: unitis not executed
> Function block inputs are not active
> Function block outputs are not specified

185

ExtendedController CR0232

5.2.15 Function elements: measuring / setting of time

Content

TIMER_READ ..o eeeeeeeeeeeee e eeeee s s e es e seeeseeess e s ee e es e eseeeseeeseee s es e eseeeseeeesee e eseeseseseseseeeseneenes
TIMER _READ_US .ottt eeee e e e seees e seeesseesseesees e es e es e s eeseee s eseeeseeeseeesses s eseseseseseseseesseeseenes

Using the following function blocks of ifm electronic you can...

* measure time and evaluate it in the application program,
 change time values, if required.

186

ExtendedController CR0232

TIMER_READ

27719

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

TIMER_READ

Description
27827

TIMER_READ reads the current system time.
When the supply voltage is applied, the device generates a clock pulse which is counted upwards in a

register. This register can be read using the FB call and can for example be used for time
measurement.

M The system timer goes up to OXxFFFF FFFF at the maximum (corresponds to 49d 17h 2min 47s
295ms) and then starts again from O.

Parameters of the outputs
27740

Parameter Data type Description

T TIME Current system time [ms]

187

ExtendedController CR0232

TIMER_READ_US

27716

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

TIMER_READ_US

TIME_US |—

Description
27793

TIMER_READ_US reads the current system time in [us].
When the supply voltage is applied, the device generates a clock pulse which is counted upwards in a

register. This register can be read by means of the FB call and can for example be used for time
measurement.

(2] Info

The system timer runs up to the counter value 4 294 967 295 us at the maximum and then starts
again from 0.

4 294 967 295 ps = 1h 11min 34s 967ms 295us

Parameters of the outputs
27758

Parameter Data type Description

TIME_US DWORD current system time [ps]

188

ExtendedController CR0232

5.2.16 Function elements: device temperature

Content
TEMPERATURE

189

ExtendedController CR0232

TEMPERATURE

Unit type = function block (FB)

Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

TEMPERATURE

—1 ENABLE

TEMPERATURE

Description

TEMPERATURE reads the current temperature in the device.

The FB can be called cyclically and indicates the current device temperature (-40...125 °C) on its

output.
Parameters of the inputs

Parameter

ENABLE

Parameters of the outputs

Parameter

TEMPERATURE

190

Data type
BOOL

Data type
INT

Description

TRUE: execute this function element

FALSE: unitis not executed
> Function block inputs are not active
> Function block outputs are not specified

Description

Current internal temperature of the device [°C]

2216

2365

2366

2367

ExtendedController CR0232

5.2.17 Function elements: saving, reading and converting data in the memory

Content

Storage types for data DACKUDueiiiiiiie e 191
1 SRS S (] 1 P PP P PP PPPRP P 192
AU} (o) 0 F= L d oo F= L t= B o F= Uod (U] o LSS 193
Y= T LU F= U0 F= L = U] (o Vo [195

28364

Storage types for data backup

28421
The device provides the following memory types:

Flash memory
28829
Properties:
* non-volatile memory
« writing is relatively slow and only block by block
* before re-writing, memory content must be deleted
« fast reading
* limited writing and reading frequency
« really useful only for storing large data quantities
* saving data with FLASHWRITE
* reading data with FLASHREAD

FRAM memory
28831
FRAM indicates here all kinds of non-volatile and fast memories.

Properties:

« fast writing and reading

+ unlimited writing and reading frequency
* any memory area can be selected

* saving data with FRAMWRITE

* reading data with FRAMREAD

191

ExtendedController CR0232

File system
2690

The file system coordinates the storage of the information in the memory. The size of the file system is
128 kbytes.

The file names of the data system are limited:

max. length for Controller: CROn3n, CR7n3n: 15 characters

max. for all other units: 11 characters

Behaviour of the file system in the Controller: CROn3n, CR7n3n:

e The controller always tries to write the file, even if the same file name already exists. The file might
be saved several times. Only the current file is used. Via the download (see below) this multiple
filing can be prevented.

¢ Individual files cannot be overwritten or deleted.

e The file system is completely deleted during each download (boot project download or RAM
download). Then e.g. a symbol file or a project file (FBs in CODESYS) can be written.

e The file system is also deleted during a [Reset (Original)] (CODESY'S function in the menu
[Online)).

192

ExtendedController CR0232

Automatic data backup

Content
MEMORY_RETAIN_PARAM ..ottt ittt e ettt e e e e ettt e e e e e e e e s s aaaaeeeaeeaesantasaeeeaaeessannsnnanneaaeanan 194

The ecomatmobile controllers allow to save data (BOOL, BYTE, WORD, DWORD) non-volatilely

(= saved in case of voltage failure) in the memory. If the supply voltage drops, the backup operation is
automatically started. Therefore it is necessary that the data is defined as RETAIN variables

(— CODESYS).

A distinction is made between variables declared as RETAIN and variables in the flag area which can

be configured as a remanent block with MEMORY_RETAIN_PARAM (— p. 194).
Details — chapter Variables (— p. 66)

The advantage of the automatic backup is that also in case of a sudden voltage drop or an interruption
of the supply voltage, the storage operation is triggered and thus the current values of the data are
saved (e.g. counter values).

@ i supply voltage < 8 V, retain data is no longer backed up!
In this case, flag RETAIN_WARNING = TRUE.

193

ExtendedController CR0232

MEMORY_RETAIN_PARAM

27673
Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

MEMORY_RETAIN_PARAM

=1 ENABLE
—]LEN
=1 MODE

Description

28023
MEMORY_RETAIN_PARAM determines the remanent data behaviour for various events. Variables
declared as VAR_RETAIN in CODESYS have a remanent behaviour from the outset.

Remanent data keep their value (as the variables declared as VAR_RETAIN) after an uncontrolled
termination as well as after normal switch off and on of the controller. After a restart the program
continues to work with the stored values.

For groups of events that can be selected (with MODE), this function block determines how many
(LEN) data bytes (from flag byte %MBO) shall have retain behaviour even if they have not been
explicitly declared as VAR_RETAIN.

Event

Power OFF = ON

Soft reset
Cold reset

Reset default

Load application program

MODE =0
Data is newly initialised
Data is newly initialised
Data is newly initialised
Data is newly initialised

Data is newly initialised

MODE =1
Data is remanent
Data is remanent

Data is newly initialised
Data is newly initialised

Data is newly initialised

MODE =2
Data is remanent
Data is remanent
Data is remanent
Data is remanent

Data is remanent

MODE =3
Data is remanent
Data is remanent
Data is remanent
Data is remanent

Data is remanent

Load runtime system Data is newly initialised | Data is newly initialised = Data is newly initialised Data is remanent

If MODE = 0, only those data have retain behaviour as with MODE=1 which have been explicitly
declared as VAR_RETAIN.

If the FB is never called, the flag bytes act according to MODE = 0. The flag bytes which are above the
configured area act according to MODE = 0, too.

Once a configuration has been made, it remains on the device even if the application or the runtime
system is reloaded.

Parameters of the inputs
27645

Parameter Data type

ENABLE BOOL TRUE:
FALSE:

Description

execute this function element

unit is not executed
> Function block inputs are not active
> Function block outputs are not specified

LEN WORD Number of data bytes from flag address %MBO0 onwards to show
remanent behaviour
allowed = 0...4 096 = 0x0...0x1000

LEN >4 096 will be corrected automatically to LEN =4 096

Events for which these variables shall have retain behaviour
(0...3; — table above)
For MODE > 3 the last valid setting will remain

MODE BYTE

194

ExtendedController CR0232

Manual data storage

Content

L IS o | 2 I 196
L IS o LAY 197
L N1V 1 I 199
L Y YV N 200
1 2 201
L A 202

Besides the possibility to store data automatically, user data can be stored manually, via function block
calls, in integrated memories from where they can also be read.

(2] By means of the storage partitioning (— chapter Available memory (— p. 16)) the programmer
can find out which memory area is available.

195

ExtendedController CR0232

FLASHREAD

27888

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

FLASHREAD

ENABLE
SRC
LEN
DST

Description
27769

FLASHREAD enables reading of different types of data directly from the flash memory.

> The FB reads the contents as from the address of SRC from the flash memory. In doing so, as
many bytes as indicated under LEN are transmitted.

The contents are read completely during the cycle in which the FB is called up.

» Please make sure that the target memory area in the RAM is sufficient.

» To the destination address DST applies:

() Determine the address by means of the operator ADR and assigne it to the POU!

\%

Parameters of the inputs
2318

Parameter Data type Description

ENABLE BOOL TRUE: execute this function element

FALSE: unitis not executed
> Function block inputs are not active
> Function block outputs are not specified

SRC DWORD relative start address in memory
allowed = 0...65 535 = 0x0...0x0000 FFFF

[D If start address is outside the permissible range:
> no data transfer

LEN DWORD number of data bytes (max. 65 536 = 0x0001 0000)

[D If the indicated number of bytes exceeded the flash memory
space, the data would only be transmitted to the end of the flash
memory space.

DST DWORD destination address

@ Determine the address by means of the operator ADR and
assigne it to the POU!

196

ExtendedController CR0232

FLASHWRITE

27885

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

FLASHWRITE

ENABLE
DST
LEN
SRC

Description

| 2

19245
Activate the TEST input to use the function block! Otherwise, a watchdog error occurs.

Test input is active:

* Programming mode is enabled

* Software download is possible

« Status of the application program can be queried
* Protection of stored software is not possible

32442

A WARNING

Danger due to uncontrollable process operations!
The status of the inputs/outputs is "frozen" during execution of FLASHWRITE.

| 2

Do not execute this FB when the machine is running!

FLASHWRITE enables writing of different data types directly into the flash memory.
Using this FB, large data volumes are to be stored during set-up, to which there is only read access in

the
| 2

| 2

process.

If a page has already been written (even if only partly), the entire flash memory area needs to be
deleted before new write access to this page. This is done by write access to the address 0.

Never write to a page several times! Always delete everything first!
Otherwise, traps or watchdog errors occur.
@ Do not delete the flash memory area more often than 100 times. Otherwise, the data
consistency in other flash memory areas is no longer guaranteed.
During each SPS cycle, FLASHWRITE may only be started once!
To the source start address SRC applies:
Determine the address by means of the operator ADR and assigne it to the POU!

The FB writes the contents of the address SRC into the flash memory. In doing so, as many bytes
as indicated under LEN are transmitted.

() if destination start address DST is outside the permissible range: no data transfer!

197

ExtendedController CR0232

Parameters of the inputs

Parameter

ENABLE

DST

LEN

SRC

198

Data type
BOOL

DWORD

DWORD

DWORD

Description

TRUE: execute this function element

FALSE: unitis not executed
> Function block inputs are not active
> Function block outputs are not specified

Relative start address in memory
allowed = 0...65 535 = 0x0...0x0000 FFFF

@ Determine the address by means of the operator ADR and
assigne it to the POU!

number of data bytes (max. 65 536 = 0x0001 0000)

@ If the indicated number of bytes exceeded the flash memory
space, the data would only be transmitted to the end of the flash
memory space.

source address

2603

ExtendedController CR0232

FRAMREAD

27886

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

FRAMREAD

ENABLE
SRC
LEN
DST

Description
28176

FRAMREAD enables quick reading of different data types directly from the FRAM memory 1).
The FB reads the contents as from the address of SRC from the FRAM memory. In doing so, as many
bytes as indicated under LEN are transmitted.
If the FRAM memory area were to be exceeded by the indicated number of bytes, only the data up to
the end of the FRAM memory area will be read.
» To the destination address DST applies:
() Determine the address by means of the operator ADR and assigne it to the POU!
1) FRAM indicates here all kinds of non-volatile and fast memories.

Parameters of the inputs
2606

Parameter Data type Description

ENABLE BOOL TRUE: execute this function element

FALSE: unitis not executed
> Function block inputs are not active
> Function block outputs are not specified

SRC DWORD relative start address in memory

allowed = 0... 16 383 = 0x0000 0000...0x0000 3FFF
LEN DWORD number of data bytes

allowed = 0...16 384 = 0x0000 0000...0x0000 4000
DST DWORD destination address

@ Determine the address by means of the operator ADR and
assigne it to the POU!

199

ExtendedController CR0232

FRAMWRITE

27863

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

FRAMWRITE

ENABLE
DST
LEN
SRC

Description
28167

FRAMWRITE enables the quick writing of different data types directly into the FRAM memory).
The FB writes the contents of the address SRC to the non-volatilie FRAM memory. In doing so, as
many bytes as indicated under LEN are transmitted.
If the FRAM memory area were to be exceeded by the indicated number of bytes, only the data up to
the end of the FRAM memory area will be written.
» To the source address SRC applies:

() Determine the address by means of the operator ADR and assigne it to the POU!

@ it the target address DST is outside the permissible range: no data transfer!
1) FRAM indicates here all kinds of non-volatile and fast memories.

Parameters of the inputs
2605

Parameter Data type Description

ENABLE BOOL TRUE: execute this function element

FALSE: unitis not executed
> Function block inputs are not active
> Function block outputs are not specified

DST DWORD Relative start address in memory

allowed = 0... 16 383 = 0x0...0x0000 3FFF
LEN DWORD number of data bytes

allowed = 0...16 384 = 0x0000 0000...0x0000 4000
SRC DWORD start address in source memory

@ Determine the address by means of the operator ADR and
assigne it to the POU!

200

ExtendedController CR0232

MEMCPY

27672
= memory copy

Unit type = function block (FB)

Unit is contained in the libraryifm_CR0232_Vxxyyzz.LIB

Symbol in CODESYS:

MEMCPY

=1 DST
—1SRC
—]LEN

Description

15944
32818

MEMCPY enables writing and reading different types of data directly in the memory.
The FB writes the contents of the address of SRC to the address DST.

» To the addresses SRC and DST apply:
() Determine the address by means of the operator ADR and assigne it to the POU!

> In doing so, as many bytes as indicated under LEN are transmitted. So it is also possible to
transmit exactly one byte of a word variable.

> |If the memory area into which the data are to be copied is not entirely in a permissible memory
area, the data will not be copied and a parameter error will be signalled.

DST memory area Device Memory size

Application data (all) 192 Kbytes

Tables "Available memory" — chapter Available memory (— p. 16)

Parameters of the inputs
27680

Parameter Data type Description
DST DWORD destination address

@ Determine the address by means of the operator ADR and
assigne it to the POU!

SRC DWORD start address in source memory

@ Determine the address by means of the operator ADR and
assigne it to the POU!

LEN WORD number (> 1) of the data bytes to be transmitted

201

ExtendedController CR0232

MEMSET

2348

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

MEMSET

—1DST
—]DATA
= LEN

Description
2350

MEMSET enables writing to a defined data area.

The FB writes the content of DATA into the memory as from the address of DST as many bytes as
indicated under LEN.

» For the destination address DST applies:
() Determine the address by means of the operator ADR and assigne it to the POU!

> If the memory area into which the data are to be copied is not entirely in a permissible memory
area, the data will not be copied and a parameter error will be signalled.

DST memory area Device Memory size

Application data (all) 192 Kbytes

Parameters of the inputs
2351

Parameter Data type Description
DST DWORD destination address

@ Determine the address by means of the operator ADR and
assigne it to the POU!

DATA BYTE Value to be written
LEN WORD number of data bytes to be overwritten with DATA

202

ExtendedController CR0232

5.2.18 Function elements: data access and data check

Content

CHE CK DA T A e, 204
GET IDENTITY i, 206
(€1 I 1 =V B 2 =3 O S 207
LS I 0 =1 = LR 208
LS I 10 =V 8 22 209
SET _PASSWORD.....coiiiiiiiii ittt e et e e e e et e et e et eaeaeaa s tataeeeeeesa s antaeaeaaeeesaasntaneeaaesesannsneaneeaaeanan 210

The FBs described in this chapter control the data access and enable a data check.

203

ExtendedController CR0232

CHECK_DATA

27809
Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

CHECK_DATA
—{ STARTADR RESULT |—
—]{LENGTH CHECKSUM [—
—] UPDATE

Description

27768
CHECK_DATA generates a checksum (CRC) for a configurable memory area and checks the data of
the memory area for undesired changes.

» Create a separate instance of the function block for each memory area to be monitored.

» (U Determine the address by means of the operator ADR and assigne it to the POU!
» In addition, indicate the number of data bytes LENGTH (length from the STARTADR).

Undesired change: Error!

If input UPDATE = FALSE and data in the memory is changed inadvertently, then RESULT = FALSE.
The result can then be used for further actions (e.g. deactivation of the outputs).

Desired change:

Data changes in the memory (e.g. of the application program or ecomatmobile device) are only
permitted if the output UPDATE is set to TRUE. The value of the checksum is then recalculated. The
output RESULT is permanently TRUE again.

Parameters of the inputs
2612
Parameter Data type Description

STARTADR DWORD Start address of the monitored data memory
(WORD address as from %MWO0)

@ Determine the address by means of the operator ADR and
assigne it to the POU!

LENGTH DWORD length of the monitored data memory in [byte]

UPDATE BOOL TRUE: Data was changed
> function block calculates new checksum

FALSE: Data was not changed
> function block checks memory area

Parameters of the outputs
2613
Parameter Data type Description

RESULT BOOL TRUE: CRC checksum OK:
intentional data change or no change

FALSE: CRC checksum faulty:
data was changed inadvertently

CHECKSUM DWORD Current CRC checksum

204

ExtendedController CR0232

Example: CHECK_DATA

27893

In the following example the program determines the checksum and stores it in the RAM via pointer pt:

LR
ml ; BOOL = TRUE;
ool CHECK_DATS;

ak; BOOL;
5| pt: POINTER TO WORE;
END_\vAR
A0D BUB
16#E20C00 pt
1 E2400- 2
cdl
SUB CHEGK_DATA
1EEAD0 = 1GE2DCN0-{STARTADR RESULT| ol
R L lenetH cHECKSUM—p1
i 4UPDATE l_p
|Fa sE——mi

205

ExtendedController CR0232

GET_IDENTITY

19287
Unit type = function block (FB)

Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB
New output SERIALNUMBER exist in:

» CR0032 from RTS V02.01.06

» CR0033 from RTS V01.00.09

* CR0133 from RTS V01.00.09

» CR0232 from RTS V01.00.03

» CR0233 from RTS V01.00.09

Symbol in CODESYS:

GET_IDENTITY
—ENABLE DEVICENAME |—
FIRMWARE |—
RELEASE |—
APPLICATION |—
SERIALNUMBER |—

Description

19288
GET_IDENTITY reads the specific identifications stored in the device:
» hardware name and hardware version of the device
* name of the runtime system in the device
« version and revision no. of the runtime system in the device
» name of the application (has previously been saved by means of SET_IDENTITY (— p. 209))
* serial number of the device

Parameters of the inputs
28478

Parameter Data type Description

ENABLE BOOL TRUE: execute this function element

FALSE: unitis not executed
> Function block inputs are not active
> Function block outputs are not specified

Parameters of the outputs
19289

Parameter Data type Description
DEVICENAME STRING(31) hardware name

as a string of max. 31 characters, e.g.: "CR0403"
FIRMWARE STRING(31) Name of the runtime system in the device

as character string of max. 31 characters

e.g.. "CR0403"
RELEASE STRING(31) software version

as a character string of max. 31 characters
APPLICATION STRING(79) Name of the application

as a string of max. 79 characters
e.g.: "Crane1704"

SERIALNUMBER STRING(31) Serial number of the device
as character string of max. 31 characters
e.g.: "12345678"

206

ExtendedController CR0232

GET_IDENTITY_EIOS

19247
EIOS = Extended 10 System = runtime system of the extended side

Unit type = function block (FB)

Unit is contained in the libraryifm_CR0232_Vxxyyzz.LIB
Function block exist in:

» CR0232 from RTS V01.00.03

* CR0233 from RTS V01.00.09

* CR0234

» CR0235

Symbol in CODESYS:

GET_IDENTITY_EIOS

—1 ENABLE FIRMWARE [—
RELEASE p—

Description
19249

GET_IDENTITY_EIOS reads the specific identifications for the extended side stored in the device:
» name of the extended 10 system (EIOS) in the device
« version and revision no. of the extended 10 system (EIOS) in the device

Parameters of the inputs
19250
Parameter Data type Description

ENABLE BOOL TRUE: execute this function element

FALSE: unitis not executed
> Function block inputs are not active
> Function block outputs are not specified

Parameters of the outputs
19251
Parameter Data type Description

FIRMWARE STRING(31) Name of the extended 10 system (EIOS) in the device
as character string of max. 31 characters

RELEASE STRING(31) software version of the extended 10 system (EIOS) in the device
as a character string of max. 31 characters

207

ExtendedController CR0232

SET_DEBUG

27721

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

SET_DEBUG

—1 ENABLE
= DEBUG

Description
27815

SET_DEBUG handles the DEBUG mode without active test input (— chapter TEST mode (— p. 49)).
If the input DEBUG of the FB is set to TRUE, the programming system or the downloader, for

example, can communicate with the device and execute some special system commands (e.g. for
service functions via the GSM modem CANremote).

@ In this operating mode a software download is not possible because the test input is not connected
to supply voltage. Only read access is possible.

Parameters of the inputs
27688

Parameter Data type Description

ENABLE BOOL TRUE: execute this function element

FALSE: unitis not executed
> Function block inputs are not active
> Function block outputs are not specified

DEBUG BOOL TRUE: debugging via the interfaces possible
FALSE: debugging via the interfaces not possible

208

ExtendedController CR0232

SET_IDENTITY

11927

Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

SET_IDENTITY

ENABLE
ID

Description
27814

SET_IDENTITY sets an application-specific program identification.
Using this FB, a program identification can be created by the application program. This identification

(i.e. the software version) can be read via the software tool DOWNLOADER.EXE in order to identify
the loaded program.

The following figure shows the correlations of the different identifications as indicated by the different
software tools. (Example: ClassicController CR0020):

Boot loader Runtime system Application
Identity Identity
BOOTLD_H 020923 CR0020 SET IDENTITY
Extended identity V2.0.0 041004 € Nozzle in front *)
CR0020 00.00.01 Hardware version
CR0020 00.00.01
Software version
Nozzle in front *)
v v
Downloader reads:
Downloader reads: CR0020
BOOTLD_H 020923 VV2.0.0 041004
CR0020 00.00.01 ifm electronic gmbh
Nozzle in front *)
CANopen tool reads:
Hardware version
OBV 1009
CR0020 00.00.01
*) [E ‘Nozzle in front' is substitutionally here for a customised text.
Parameters of the inputs
11928
Parameter Data type Description
ENABLE BOOL TRUE: execute this function element
FALSE: unitis not executed
> Function block inputs are not active
> Function block outputs are not specified
ID STRING(79) Any desired text with a maximum length of 79 characters

209

ExtendedController CR0232

SET_PASSWORD

27724
Unit type = function block (FB)
Unit is contained in the libraryifm_CR@232_Vxxyyzz.LIB

Symbol in CODESYS:

SET_PASSWORD

—1 ENABLE
=1 PASSWORD

Description
27816

SET_PASSWORD sets a user password for the program and memory upload with the
DOWNLOADER.

If the password is activated, reading of the application program or the data memory with the software
tool DOWNLOADER is only possible if the correct password has been entered.

If an empty string (default condition) is assigned to the input PASSWORD, an upload of the application
software or of the data memory is possible at any time.

A new password can be set only after resetting the previous password.

@ The password is reset when loading a new application program as boot project.

Parameters of the inputs
2353

Parameter Data type Description

ENABLE BOOL FALSE = TRUE (edge):
Initialise block (only 1 cycle)
> Read block inputs

TRUE: execute this function element

FALSE: unitis not executed
> Function block inputs are not active
> Function block outputs are not specified

PASSWORD STRING(16) password
If PASSWORD =", than access is possible without enter of a
password

210

ExtendedController CR0232

6 Diagnosis and error handling
Content
DT T |10 1) S 211
=T | RSP 211
REACLION IN CASE OF BN BITOK .. .eiiiiiiiiii ettt e e e st e e e s bt e e e ebbe e e s esbee e e e nbaeeeennees 212
=] E= NV T Y o] 2= L | g 0] =TS SRS 212
RESPONSE L0 SYSTEIM BITOIS. ... iiiieetiitie ettt ettt e e et et ee e e e e et e e et e e s e e e e et e ts bt e e e e e e eeabasaeeeeeeeesbannnaeeaaees 212
CAN / CANopen: errors and error NandliNg...........cccuiieereeo i e e e e e e e e e e e 213
28855
The runtime-system (RTS) checks the device by internal error checks:
« during the boot phase (reset phase)
» during executing the application program
— chapter Operating states (— p. 45)
In so doing a high operating reliability is provided, as much as possible.
6.1 Diagnosis
28856

During the diagnosis, the "state of health" of the device is checked. It is to be found out if and what
—faults are given in the device.

Depending on the device, the inputs and outputs can also be monitored for their correct function.
- wire break,
- short circuit,
- value outside range.

For diagnosis, configuration and log data can be used, created during the "normal” operation of the
device.

The correct start of the system components is monitored during the initialisation and start phase.
Errors are recorded in the log file.

For further diagnosis, self-tests can also be carried out.

6.2 Fault

28834

A fault is the state of an item characterized by the inability to perform the requested function, excluding
the inability during preventive maintenance or other planned actions, or due to lack of external
resources.

A fault is often the result of a failure of the item itself, but may exist without prior failure.

In —ISO 13849-1 "fault" means "random fault".

211

ExtendedController CR0232

6.3 Reaction in case of an error

19603
28543

When errors are detected the system flag ERROR can also be set in the application program. Thus, in
case of a fault, the controller reacts as follows:

> the operation LED lights red,

> the output relays switch off,

> the outputs protected by the relays are disconnected from power,
> the logic signal states of the outputs remain unchanged.

® NOTE

If the outputs are switched off by the relays, the logic signal states remain unchanged.

» The programmer must evaluate the ERROR bit and thus also reset the output logic in case of a
fault.

(&) Complete list of the device-specific error codes and diagnostic messages
— chapter System flags (— p. 215).

6.4 Relay: important notes!

14034

Premature wear of the relay contacts possible.

» In normal operation, only switch the relays without load!
For this purpose, set all relevant outputs to FALSE via the application program!

6.5 Response to system errors

14033
32423

M The programmer has the sole responsibility for the safe processing of data in the application
software.

» Process the specific error flags and/or error codes in the application program!
An error description is provided via the error flag / error code.
This error flag / error code can be further processed if necessary.

After analysis and elimination of the error cause:

» As ageneral rule, reset all error flags via the application program.
Without explicit reset of the error flags the flags remain set with the corresponding effect on the
application program.

212

ExtendedController CR0232

6.6 CAN / CANopen: errors and error handling

28808

— System manual "Know-How ecomatmobile”
— chapter CAN / CANopen: errors and error handling

213

ExtendedController CR0232

7 Appendix

Content

YY) (=T 1= T £ 215
Address assignment and [/O Operating MOUEScceeiiiiiiiiireie e ie i e e e e s e s reeee e e s e senrreaeeeeeeaaannnes 224
T G 7=][PP 240

Additionally to the indications in the data sheets you find summary tables in the appendix.

214

ExtendedController CR0232

7.1 System flags

Content

SYSEM FlAGS: CAN ..ottt e e e s a bt e e e s a bt e e e aa ket e e e e s b e e e e e aabe e e e e anbe e e e e anbe e e e e nreas 215
SySteM flags: SAE-JL1939 ...ttt e e e e e e e bn e e e anrns 216
System flags: error flags (Standard SIAE)..........ueeeiiiiiiiiiiiiie s 217
System flags: error flags (EXtENAEd SIAE)cieeeii i s e e e e e s e reeeeeeean 218
System flags: status LED (Standard SIAE)cceeiiiuiiieiieeeieiiiiiiiee e s eiieeee e e e e e s e e e e e e e e s ennnaaneeaeeae s 219
System flags: status LED (€Xt€Nded SIAE)cceeeiiiiiiiieiiee et e e e s e e e e e e s enrnaaeeeaeeaean 219
System flags: voltages (Standard SIAE)ceeeiiiiiiiiiiiie e e e e e e re e e e e e 220
System flags: voltages (EXtENAEA SIAE).......uuviiiiiiiiiiiieei e s e e e e e s e reeaee e s 221
System flags: 16 inputs and 16 outputs (standard SIde)uueeereeiiiiiiiiiiee e 221
System flags: 16 inputs and 32 outputs (extended SIdE)c.eoeiiiiiiiiiiiie e 223
28371
(1) The addresses of the system flags can change if the PLC configuration is extended.
» While programming only use the symbol names of the system flags!
— System manual "Know-How ecomatmobile”
— chapter Error codes and diagnostic information
7.1.1 System flags: CAN
12820

System flags (symbol name)
CANx_BAUDRATE
CANx_BUSOFF

CANx_DOWNLOADID
CANx_ERRORCOUNTER_RX

CANx_ERRORCOUNTER_TX

CANx_LASTERROR

CANx_WARNING

Type
WORD
BOOL

BYTE
BYTE

BYTE

BYTE

BOOL

CANX stands for x = 1...4 = number of the CAN interface

Description

CAN interface x: set baud rate in [kBaud]

CAN interface x: Error "CAN-Bus off"
Reset of the error code alse resets the flag

CAN interface x: set download identifier

CAN interface x: Error counter receiver
Reset of the flag is possible via write access

CAN interface x: error counter transmission
A reset of the flag is possible via write access

CAN interface x:
Error number of the last CAN transmission:

0 =no error

1 = stuff error
2 = form error
3 =ack error

4 = hit1 error

5 = bit0 error

6 = CRC error

Initial value

more than 5 identical bits in series on the bus
received message had wrong format

sent message was not confirmed

a recessive bit was sent outside the arbitration area, but a
dominant bit was read on the bus

it was tried to send a dominant bit, but a recessive level
was read

OR: a sequence of 11 recessive bits was read during
bus-off recovery

checksum of the received message was wrong

CAN interface x: warning threshold reached (> 96)
A reset of the flag is possible via write access

215

ExtendedController CR0232

7.1.2 System flags: SAE-J1939

System flags (symbol name) Type
J1939_RECEIVE_OVERWRITE BOOL
J1939_TASK BOOL

216

12815
Description

Setting only applies to J1939 data that has not been transmitted
via a J1939 transport protocol.

TRUE:
The old data is overwritten by the new data if the old data has
not yet been read from the function block instance

FALSE:
New data is rejected as long as the old data has not been read
from the function block instance

@ New data can arrive before the old data has been read out
if the IEC cycle is longer than the refresh rate of the J1939 data

Using J1939_TASK, the time requirement for sending J1939
messages is met.
If 31939 messages are to be sent with a repetition time
<50 ms, the runtime system automatically sets
J1939 TASK=TRUE.
For applications for which the time requirement is > PLC cycle
time:
» Reduce system load with J1939_TASK=FALSE!
TRUE: J1939 task is active (= initial value)
The task is called every 2 ms.
The J1939 stack sends its messages in the
required time frame

FALSE: J1939 task is not active

ExtendedController CR0232

7.1.3 System flags: error flags (standard side)

12821

System flags (symbol name) Type Description
ERROR BOOL TRUE = set group error message, switch off relay
ERROR_BREAK_Ix WORD input word x: wire break error
(0...x, value depends on the device, [Bit O for input 0] ... [bit z for input z] of this group
— data sheet) Bit = TRUE: error
Bit = FALSE: no error
ERROR_BREAK_Qx WORD output word x: wire break error
(0...x, value depends on the device, [Bit O for output O] ... [bit z for output z] of this group
— data sheet) Bit = TRUE: error
Bit = FALSE: no error
ERROR_CONTROL_Qx WORD output word x:error current control
(0...x, value depends on the device, final value cannot be reached
— data sheet) [Bit O for output O] ... [bit z for output z] of this group
Bit = TRUE: error
Bit = FALSE: no error
ERROR_CURRENT _Ix WORD input word x: over-current error
(0...x, value depends on the device, only if Ixx_MODE = IN_CURRENT
— data sheet) [Bit O for input Q] ... [bit z for input z] of this group
Bit = TRUE: error
Bit = FALSE: no error
ERROR_IO BOOL Group error message input / output error
TRUE: Error

FALSE: No error

ERROR_POWER BOOL Overvoltage error for VBBs / clamp 15:

TRUE: Value out of range
or: difference (VBB15 - VBBs) > 1V
> general error

application STOP

outputs = inactive

no communication

message "Overvoltage clamp 15"

FALSE: Value OK

>
>
>
>

ERROR_SHORT_Ix WORD input word x: short circuit error
(0...x, value depends on the device, [Bit O for input O] ... [bit z for input z] of this group
— data sheet) Bit = TRUE: error

Bit = FALSE: no error
ERROR_SHORT_Qx WORD output word x: short circuit error
(0...x, value depends on the device, [Bit O for output Q] ... [bit z for output z] of this group
— data sheet) Bit = TRUE: error

Bit = FALSE: no error
ERROR_TEMPERATURE BOOL Temperature error

TRUE: Value out of range
> general error

FALSE: Value OK

ERROR_VBBx BOOL Supply voltage error on VBBx (x =0 | r):

TRUE: Value out of range
> general error

FALSE: Value OK

LAST_RESET BYTE Cause for the last reset:
00 = reset of the application
01 = power-on reset
02 = watchdog reset
03 = soft reset
04 = unknown cause

217

ExtendedController CR0232

7.1.4 System flags: error flags (extended side)

12823
System flags (symbol name) Type Description

BOARD_LINK_ERROR BOOL The connection to the extended side is...

TRUE: interrupted
the extended side is offline

If the connection is interrupted, no automatic reconnection
will be possible. P Restart device!

FALSE: OK
BOARD_LINK_WARNING BOOL The connection to the extended side is...
TRUE: disturbed but operational
FALSE: OK
ERROR_BREAK_Ix_E WORD extended input word x: wire break error
(0...x, value depends on the device, [Bit O for input Q] ... [bit z for input z] of this group
— data sheet) Bit = TRUE: error
Bit = FALSE: no error
ERROR_BREAK_QO_E DWORD first extended output double word: wire break error
[Bit O for output Q] ... [bit z for output z] of this group
Bit = TRUE: error
Bit = FALSE: no error
ERROR_CONTROL_Qx_E WORD extended output word x:error current control
(0...x, value depends on the device, final value cannot be reached
— data sheet) [Bit O for output O] ... [bit z for output z] of this group
Bit = TRUE: error
Bit = FALSE: no error
ERROR_CURRENT_Ix_E WORD extended input word x: over-current error
(0...x, value depends on the device, only if Ixx_MODE_E = IN_CURRENT
— data sheet) [Bit O for input O] ... [bit z for input z] of this group
Bit = TRUE: error
Bit = FALSE: no error
ERROR_IO_E BOOL Group error message input / output error extended side
TRUE: Error

FALSE: No error

ERROR_POWER_E BOOL Voltage error extended side:
TRUE: Value out of range
FALSE: Value OK

ERROR_SHORT_Ix_E WORD extended input word x: short circuit error
(0...x, value depends on the device, [Bit O for input 0] ... [bit z for input z] of this group
— data sheet) Bit = TRUE: error
Bit = FALSE: no error
ERROR_SHORT_Qx_E WORD extended output word x: short circuit error
(0...x, value depends on the device, [Bit O for output Q] ... [bit z for output z] of this group
— data sheet) Bit = TRUE: error
Bit = FALSE: no error
ERROR_VBBx_E BOOL Supply voltage error on extended VBBx
x=1|2|3|4

TRUE: Value out of range
FALSE: Value OK

ERROR_VBBREL_E BOOL Supply voltage error at relay supply:
TRUE: Value out of range
FALSE: Value OK

218

ExtendedController CR0232

7.1.5 System flags: status LED (standard side)

System flags (symbol name)

LED

LED_X

LED_MODE

Type
WORD

WORD

WORD

Description

LED color for "LED switched on":

0x0000 = LED_GREEN (preset)
0x0001 = LED_BLUE

0x0002 = LED_RED

0x0003 = LED_WHITE

0x0004 = LED_BLACK

0x0005 = LED_MAGENTA
0x0006 = LED_CYAN

0x0007 = LED_YELLOW

LED color for "LED switched off":

0x0000 = LED_GREEN
0x0001 = LED_BLUE

0x0002 = LED_RED

0x0003 = LED_WHITE

0x0004 = LED_BLACK (preset)
0x0005 = LED_MAGENTA
0x0006 = LED_CYAN

0x0007 = LED_YELLOW

LED flashing frequency:

0x0000 = LED_2HZ (flashes at 2 Hz; preset)

0x0001 = LED_1HZ (flashes at 1 Hz)

0x0002 = LED_O05HZ (flashes at 0.5 Hz)

0x0003 = LED_0HZ (lights permanently with value in LED)

7.1.6 System flags: status LED (extended side)

System flags (symbol name)

LED_E

LED_X_E

LED_MODE_E

Type
WORD

WORD

WORD

Description

LED color for "LED switched on":

0x0000 = LED_GREEN (preset)
0x0001 = LED_BLUE

0x0002 = LED_RED

0x0003 = LED_WHITE

0x0004 = LED_BLACK

0x0005 = LED_MAGENTA
0x0006 = LED_CYAN

0x0007 = LED_YELLOW

LED color for "LED switched off":

0x0000 = LED_GREEN
0x0001 = LED_BLUE

0x0002 = LED_RED

0x0003 = LED_WHITE

0x0004 = LED_BLACK (preset)
0x0005 = LED_MAGENTA
0x0006 = LED_CYAN

0x0007 = LED_YELLOW

LED flashing frequency:
0x0000 = LED_2HZ (flashes at 2 Hz; preset)

0x0001 = LED_1HZ (flashes at 1 Hz)
0x0002 = LED_05HZ (flashes at 0.5 Hz)

0x0003 = LED_OHZ (lights permanently with value in LED_|

28376

12824

E)

219

ExtendedController CR0232

7.1.7 System flags: voltages (standard side)

System flags (symbol name)
CLAMP_15_VOLTAGE
REF_VOLTAGE
REFERENCE_VOLTAGE_5
REFERENCE_VOLTAGE_10

RELAIS_VBBy
y=o]|r

SERIAL_MODE

SUPPLY_SWITCH

SUPPLY_VOLTAGE
TEST

VBBx_RELAIS_VOLTAGE
X=0]|r

VBBx_VOLTAGE
X=o|r

220

Type
WORD
WORD
BOOL
BOOL
BOOL

BOOL

BOOL

WORD
BOOL

WORD

WORD

12822
Description

voltage applied to clamp 15 in [mV]

Voltage on reference voltage output in [mV]

Reference voltage output with 5 V activated

Reference voltage output with 10 V activated

TRUE: relay for VBBY activated
voltage is applied to output group x
(x=112)

FALSE: relay for VBBy deactivated
no voltage is applied to output group x

Activate serial interface (RS232) for use in the application

TRUE:

The RS232 interface can be used in the application, but no
longer for programming, debugging or monitoring of the device.
FALSE:

The RS232 interface cannot be used in the application.
Programming, debugging or monitoring of the device is
possible.

Bit for switching off the supply latching VBBs. Resetting the flag
is only accepted by the runtime system if the voltage at

clamp 15 < 4V, otherwise the flag is activated again.
Separation of VBBs is done before the next PLC cycle starts.
Depending on the charging status of the internal capacitors it
may take some time until the device switches off.

TRUE: Supply of the device via VBBs is active
FALSE: Supply of the device via VBBs is deactivated

supply voltage at VBBs in [mV]

TRUE: Testinputis active:

* Programming mode is enabled

« Software download is possible

« Status of the application program can be queried
« Protection of stored software is not possible

FALSE: application is in operation

Supply voltage on VBBXx to relay contact in [mV]

Supply voltage on VBBXx in [mV]

ExtendedController CR0232

7.1.8 System flags: voltages (extended side)
12203

System flags (symbol name) Type Description
RELAIS_VBBy_E BOOL TRUE: relay for VBBYy activated
y=o|r VBBo — VBB1 + VBB3

VBBr — VBB2 + VBB4

voltage is applied to extended output group x

(x=1121314)

FALSE: relay for VBBy deactivated

no voltage is applied to output group x
VBBx_RELAIS_VOLTAGE_E WORD Supply voltage on VBBXx_E to relay contact in [mV]
x=1]2|3|4
VBB_RELAIS_VOLTAGE_E WORD Supply voltage for relay supply in [mV]

719

System flags (symbol name) Type
ANALOGxx WORD
xx = 00...15

ANALOG_IRQxx WORD
xx = 00...07

CURRENTxx WORD
xx = 00...15

IXX BOOL
xx = 00...15

Ixx_DFILTER DWORD
xx =00...11

Ixx_FILTER BYTE:=4
xx = 00...15

Ixx_MODE BYTE
xx = 00...15

System flags: 16 inputs and 16 outputs (standard side)

13119

Description

Analogue input xx:
filtered A/D converter raw value (12 bits) without calibration or
standardisation

Analogue input xx:

unfiltered A/D converter raw value (12 bits)
without calibration or standardisation

Use in FB SET_INTERRUPT_| (— p. 125) or
SET_INTERRUPT_XMS (— p. 127)

PWM output xx:
filtered A/D converter raw values (12 bits) of the current
measurement without calibration or standardisation

Status on binary input xx
Condition: input is configured as binary input
(MODE = IN_DIGITAL_H or IN_DIGITAL_L)

TRUE: Voltage on binary input > 70 % of VBBS

FALSE: Voltage on binary input < 30 % of VBBS
or: not configured as binary input
or: wrong configuration

Pulse input xx:
pulse duration in [us] which is to be ignored as a glitch.
Acquisition of the input signal is delayed by the set time.

allowed = 0...100 000 pus
preset = 0 ps = no filter

Binary and analogue input xx:
limit frequency (or signal rise time) of the first-order software
low-pass filter

0 = 0x00 = no filter

1 =0x01 =390 Hz (1 ms)

2 =0x02 = 145 Hz (2.5 ms)

3 =0x03 = 68 Hz (5 ms)

4 = 0x04 = 34 Hz (10 ms) (preset)
5 =0x05 =17 Hz (21 ms)

6 = 0x06 = 8 Hz (42 ms)

7 = 0x07 = 4 Hz (84 ms)

8 = 0x08 = 2 Hz (169 ms)

higher = — preset value

Operating mode of the input Ixx
— chapter Possible operating modes inputs/outputs (—

p. 233)

221

ExtendedController CR0232

System flags (symbol name) Type Description
Qxx BOOL Status on binary output xx:
xx = 00...15 Condition: output is configured as binary output

TRUE: output activated

FALSE: output deactivated (= initial value)
or: not configured as binary output

Qxx_FILTER BYTE Output xx:

xx = 00...15 limit frequency of the first-order software low-pass filter for the
current measurement
only if Qxx_MODE = OUT_DIGITAL_H
not if PWM mode

0 = 0x00 = no filter

1 =0x01 =580 Hz (0.6 ms)

2 =0x02 =220 Hz (1.6 ms)

3 =0x03 =102 Hz (3.5 ms)

4 = 0x04 = 51 Hz (7 ms) (preset)
5 = 0x05 = 25 Hz (14 ms)

6 = 0x06 = 12 Hz (28 ms)

7 = 0x07 = 6 Hz (56 ms)

8 = 0x08 = 3 Hz (112 ms)

higher = — preset value

Qxx_MODE BYTE Operating mode of the output Qxx
xx = 00...15 — chapter Possible operating modes inputs/outputs (—
p. 233)

222

ExtendedController CR0232

7.1.10 System flags: 16 inputs and 32 outputs (extended side)

System flags (symbol name)

ANALOGxx_E
xx = 00...15

CURRENTxx_E
xx = 00...15

IXx_E
xx = 00...15

Ixx_DFILTER_E
xx =00...11

Ixx_FILTER_E
xx = 00...15

Ixx_MODE_E
xx = 00...15

Qxx_E
xx =00...31

Qxx_FILTER_E
xx = 00...15

Qxx_MODE_E
xx = 00...31

Type
WORD

WORD

BOOL

DWORD

BYTE:=4

BYTE

BOOL

BYTE

BYTE

13120

Description

Extended analogue input xx:
filtered A/D converter raw value (12 bits) without calibration or
standardisation

Extended PWM output xx:
filtered A/D converter raw values (12 bits) of the current
measurement without calibration or standardisation

Status at extended binary input xx_E
Condition: input is configured as binary input
(MODE = IN_DIGITAL_H or IN_DIGITAL_L)

TRUE: Voltage on binary input > 70 % of VBBS

FALSE: Voltage on binary input < 30 % of VBBS
or: not configured as binary input
or: wrong configuration

Extended pulse input xx:
pulse duration in [us] which is to be ignored as a glitch.
Acquisition of the input signal is delayed by the set time.

allowed = 0...100 000 ps
preset = 0 ps = no filter

Extended binary and analogue input xx_E:
limit frequency (or signal rise time) of the first-order software
low-pass filter

0 = 0x00 = no filter

1 =0x01 =390 Hz (1 ms)

2 = 0x02 = 145 Hz (2.5 ms)

3 =0x03 = 68 Hz (5 ms)

4 = 0x04 = 34 Hz (10 ms) (preset)
5 =0x05 = 17 Hz (21 ms)

6 = 0x06 = 8 Hz (42 ms)

7 = 0x07 = 4 Hz (84 ms)

8 = 0x08 = 2 Hz (169 ms)

higher = — preset value

Operating mode of the extended input Ixx_E
— chapter Possible operating modes inputs/outputs (—
p. 233)

Status on extended binary input xx_E:
Condition: output is configured as binary output

TRUE: output activated

FALSE: output deactivated (= initial value)
or: not configured as binary output

Extended output xx:

limit frequency of the first-order software low-pass filter for the
current measurement

only if Qxx_MODE_E = OUT_DIGITAL_H
not if PWM mode

0 = 0x00 = no filter

1 =0x01 =580 Hz (0.6 ms)

2 =0x02 = 220 Hz (1.6 ms)

3 =0x03 =102 Hz (3.5 ms)

4 = 0x04 = 51 Hz (7 ms) (preset)

5 = 0x05 = 25 Hz (14 ms)

6 = 0x06 = 12 Hz (28 ms)

7 = 0x07 = 6 Hz (56 ms)

8 = 0x08 = 3 Hz (112 ms)

higher = — preset value

Operating mode of the extended output Qxx_E
— chapter Possible operating modes inputs/outputs (—
p. 233)

223

ExtendedController CR0232

7.2 Address assignment and I/O operating modes

Content
Addresses / variables of the I/Os
Possible operating modes inputs/outputs

— also data sheet

224

ExtendedController CR0232

7.2.1 Addresses / variables of the I/Os

Content

Inputs: addresses and variables (standard side) (16 INPULS)coccuvrieiiiiiiieiiiiiiee e 225
Inputs: addresses and variables (extended Side) (16 INPULS)......coccurrieiiiiiieiiiiieeeiiiee e 226
Outputs: addresses and variables (standard side) (16 OULPULS)ccooeviiiiiiieeeeeiiiiiieeeee e e seiniieeeee e 228
Outputs: addresses and variables (extended side) (32 OULPULS)......ccoeviuriiiieeeeeiiiiiiieeee e e e e ceiinieeeeeee e 230

Inputs: addresses and variables (standard side) (16 inputs)
13352

Abbreviations —chapter Note on wiring (— p. 32)
Operating modes of the inputs/outputs —chapter Possible operating modes inputs/outputs (— p. 233)

IEC address I/O variable Remark
%I1X0.0 100 Binary input channel 0
%IX0.1 101 Binary input channel 1
%I1X0.2 102 Binary input channel 2
%IX0.3 103 Binary input channel 3
%IX0.4 104 Binary input channel 4
%I1X0.5 105 Binary input channel 5
%IX0.6 106 Binary input channel 6
%I1X0.7 107 Binary input channel 7
%I1X0.8 108 Binary input channel 8
%I1X0.9 109 Binary input channel 9
%I1X0.10 110 Binary input channel 10
%I1X0.11 111 Binary input channel 11
%IX0.12 112 Binary input channel 12
%I1X0.13 113 Binary input channel 13
%IX0.14 114 Binary input channel 14
%I1X0.15 115 Binary input channel 15
%IW2 ANALOGO00 Analogue input channel 0
%IW3 ANALOGO01 Analogue input channel 1
%IW4 ANALOG02 Analogue input channel 2
%IW5 ANALOGO03 Analogue input channel 3
%IW6 ANALOGO04 Analogue input channel 4
%IW7 ANALOGO05 Analogue input channel 5
%IW8 ANALOGO06 Analogue input channel 6
%IW9 ANALOGO7 Analogue input channel 7
%IW10 ANALOGO08 Analogue input channel 8
%IW11 ANALOGO09 Analogue input channel 9
%IW12 ANALOG10 Analogue input channel 10
%IW13 ANALOG11 Analogue input channel 11
%IW14 ANALOG12 Analogue input channel 12
%IW15 ANALOG13 Analogue input channel 13

225

ExtendedController CR0232

IEC address

%MB7960
%MB7964
%MB7968

%IW16
%IwW17

%IW18
%IW19
%IW20
%IW21
%IW22
%IW23
%IW24
%IW25
%IW26
%IW27
%IW28
%IW29
%IW30
%IW31
%IW32
%IW33

%IW34
%IW35
%IW36
%IW37
%IW38
%IW39
%IW40

%IW41
%IW42
%IW43
%IW44
%IW45
%IW46
%IW47
%IW48

1/0 variable
ANALOG14
ANALOG15

CURRENTO00
CURRENTO1
CURRENTO02
CURRENTO03
CURRENTO04
CURRENTO05
CURRENTO06
CURRENTO7
CURRENTO08
CURRENTO09
CURRENT10
CURRENT11
CURRENT12
CURRENT13
CURRENT14
CURRENT15

SUPPLY_VOLTAGE
CLAMP_15_VOLTAGE
VBBO_VOLTAGE
VBBR_VOLTAGE
VBBO_RELAIS_VOLTAGE
VBBR_RELAIS_VOLTAGE
REF_VOLTAGE

ANALOG_IRQO0
ANALOG_IRQO1
ANALOG_IRQ02
ANALOG_IRQO3
ANALOG_IRQO4
ANALOG_IRQO5
ANALOG_IRQO6
ANALOG_IRQO7

ERROR_CURRENT_I0
ERROR_SHORT _I0
ERROR_BREAK_I0

Remark
Analogue input channel 14

Analogue input channel 15

Output current (raw value) on Q00
Output current (raw value) on Q01
Output current (raw value) on Q02
Output current (raw value) on Q03
Output current (raw value) on Q04
Output current (raw value) on Q05
Output current (raw value) on Q06
Output current (raw value) on Q07
Output current (raw value) on Q08
Output current (raw value) on Q09
Output current (raw value) on Q10
Output current (raw value) on Q11
Output current (raw value) on Q12
Output current (raw value) on Q13
Output current (raw value) on Q14

Output current (raw value) on Q15

Supply voltage on VBBs in [mV]

Voltage clamp 15

Supply voltage on VBBo in [mV]

Supply voltage on VBBr in [mV]

Supply voltage VBBo to relay contact in [mV]
Supply voltage VBBr to relay contact in [mV]

Voltage on the reference output pin 51

Interrupt to analogue input channel 0
Interrupt to analogue input channel 1
Interrupt to analogue input channel 2
Interrupt to analogue input channel 3
Interrupt to analogue input channel 4
Interrupt to analogue input channel 5
Interrupt to analogue input channel 6

Interrupt to analogue input channel 7

Error DWORD overcurrent
Error DWORD short circuit
Error DWORD wire break

Inputs: addresses and variables (extended side) (16 inputs)

Abbreviations —chapter Note on wiring (— p. 32)
Operating modes of the inputs/outputs —chapter Possible operating modes inputs/outputs (— p. 233)

IEC address

226

1/0 variable

Remark

12082

ExtendedController CR0232

IEC address
%IX128.0
%IX128.1
%1X128.2
%I1X128.3
%1X128.4
%IX128.5
%1X128.6
%I1X128.7
%I1X128.8
%1X128.9
%I1X128.10
%I1X128.11
%I1X128.12
%I1X128.13
%I1X128.14
%I1X128.15

%IW130
%IW131
%IW132
%IW133
%IW134
%IW135
%IW136
%IW137
%IW138
%IW139
%IW140
%IW141
%IW142
%IW143
%IW144
%IW145

%IW146
%IW147
%IW148
%IW149
%IW150
%IW151
%IW152
%IW153
%IW154

I/O variable
100_E
101_E
102_E
103_E
104_E
105_E
106_E
107_E
108_E
109_E
110_E
111_E
112_E
113 E
114 E
115 E

ANALOGO0_E
ANALOGO1_E
ANALOGO02_E
ANALOGO3_E
ANALOGO04 _E
ANALOGO5_E
ANALOGO06_E
ANALOGO7_E
ANALOGOS_E
ANALOGO09_E
ANALOG10_E
ANALOG11_E
ANALOG12_E
ANALOG13_E
ANALOG14_E
ANALOG15_E

CURRENTO00_E
CURRENTO1_E
CURRENTO02_E
CURRENTO03_E
CURRENTO04_E
CURRENTO5_E
CURRENTO06_E
CURRENTO7_E
CURRENTO08_E

Remark

Binary input channel O
Binary input channel 1
Binary input channel 2
Binary input channel 3
Binary input channel 4
Binary input channel 5
Binary input channel 6
Binary input channel 7
Binary input channel 8
Binary input channel 9
Binary input channel 10
Binary input channel 11
Binary input channel 12
Binary input channel 13
Binary input channel 14

Binary input channel 15

Analogue input channel 0
Analogue input channel 1
Analogue input channel 2
Analogue input channel 3
Analogue input channel 4
Analogue input channel 5
Analogue input channel 6
Analogue input channel 7
Analogue input channel 8
Analogue input channel 9
Analogue input channel 10
Analogue input channel 11
Analogue input channel 12
Analogue input channel 13
Analogue input channel 14

Analogue input channel 15

Output current (raw value) on Q00_E
Output current (raw value) on Q01_E
Output current (raw value) on Q02_E
Output current (raw value) on Q03_E
Output current (raw value) on Q04_E
Output current (raw value) on Q05_E
Output current (raw value) on Q06_E
Output current (raw value) on Q07_E

Output current (raw value) on Q08_E

227

ExtendedController CR0232

IEC address
%IW155
%IW156
%IW157
%IW158
%IW159
%IW160
%IW161

%IW162
%IW163
%IW164
%IW165
%IW166
%IW167
%IW168
%IW169
%IW170

%MB8048
%MB8052
%MB8056

Outputs: addresses and variables (standard side) (16 outputs)

I/O variable
CURRENTO09_E
CURRENT10_E
CURRENT11_E
CURRENT12_E
CURRENT13_E
CURRENT14_E
CURRENT15_E

VBB1_E

VBB2_E

VBB3_E

VBB4_E
VBB1_RELAIS_VOLTAGE
VBB2_RELAIS_VOLTAGE
VBB3_RELAIS_VOLTAGE
VBB4_RELAIS_VOLTAGE
VBB_RELAIS_VOLTAGE

ERROR_CURRENT_[0_E
ERROR_SHORT_[0_E
ERROR_BREAK_I0_E

Abbreviations —chapter Note on wiring (— p. 32)

Operating modes of the inputs/outputs —chapter Possible operating modes inputs/outputs (— p. 233)

IEC address
%QX0.0
%QX0.1
%QX0.2
%QX0.3
%QX0.4
%QX0.5
%QX0.6
%QX0.7
%QX0.8
%QX0.9
%QX0.10
%QX0.11
%QX0.12
%QX0.13
%QX0.14
%QX0.15

%QB2

228

I/O variable
Q00
Qo1
Q02
Q03
Q04
Q05
Q06
Qo7
Qo8
Q09
Q10
Q11
Q12
Q13
Q14
Q15

REFERENCE_VOLTAGE_5

Remark

Output current (raw value) on Q09_E
Output current (raw value) on Q10_E
Output current (raw value) on Q11_E
Output current (raw value) on Q12_E
Output current (raw value) on Q13 _E
Output current (raw value) on Q14 _E

Output current (raw value) on Q15_E

Supply voltage on VBBL1 in [mV]
Supply voltage on VBB2 in [mV]
Supply voltage on VBB3 in [mV]
Supply voltage on VBB4 in [mV]

Supply voltage VBB to relay contact in [mV]
Supply voltage VBB2 to relay contact in [mV]
Supply voltage VBB3 to relay contact in [mV]
Supply voltage VBB4 to relay contact in [mV]

Supply voltage on VBBrel in [mV]

Error DWORD overcurrent
Error DWORD short circuit
Error DWORD wire break

Remark

Binary output / PWM output channel 0
Binary output / PWM output channel 1
Binary output / PWM output channel 2
Binary output / PWM output channel 3
Binary output / PWM output channel 4
Binary output / PWM output channel 5
Binary output / PWM output channel 6
Binary output / PWM output channel 7
Binary output / PWM output channel 8
Binary output / PWM output channel 9
Binary output / PWM output channel 10
Binary output / PWM output channel 11
Binary output / PWM output channel 12
Binary output / PWM output channel 13
Binary output / PWM output channel 14
Binary output / PWM output channel 15

Activating the reference voltage output with 5V

13354

ExtendedController CR0232

IEC address
%QB3

%QB68
%QB69
%QB70
%QB71
%QB72
%QB73
%QB74
%QB75
%QB76
%QB77
%QB78
%QB79
%QB80
%QB81
%QB82
%QB83

%QB84
%QB85
%QB86
%QB87
%QB88
%QB89
%QB90
%QB91
%QB92
%QB93
%QB94
%QB95
%QB96
%QB97
%QB98
%QB99

%QD25
%QD26
%QD27
%QD28
%QD29
%QD30
%QD31
%QD32

1/0 variable

REFERENCE_VOLTAGE_10

I00_FILTER
I01_FILTER
102_FILTER
103_FILTER
104_FILTER
105_FILTER
106_FILTER
107_FILTER
108_FILTER
109_FILTER
110_FILTER
111_FILTER
112_FILTER
113_FILTER
114_FILTER
115_FILTER

QO0_FILTER
QO1_FILTER
QO02_FILTER
QO03_FILTER
Q04_FILTER
QO5_FILTER
QO06_FILTER
QO7_FILTER
QO8_FILTER
QO09_FILTER
Q10_FILTER
Q11_FILTER
Q12_FILTER
Q13_FILTER
Q14 _FILTER
Q15_FILTER

100_DFILTER
101_DFILTER
102_DFILTER
103_DFILTER
104_DFILTER
105_DFILTER
106_DFILTER
107_DFILTER

Remark

Activating the reference voltage output with 10 V

Filter byte for %1X0.0 / %IW2
Filter byte for %1X0.1 / %IW3
Filter byte for %1X0.2 / %IW4
Filter byte for %1X0.3 / %IW5
Filter byte for %1X0.4 / %IW6
Filter byte for %1X0.5 / %IW7
Filter byte for %1X0.6 / %IW8
Filter byte for %1X0.7 / %IW9
Filter byte for %1X0.8 / %IW2
Filter byte for %1X0.9 / %IW3
Filter byte for %1X0.10 / %IW4
Filter byte for %1X0.11 / %IW5
Filter byte for %1X0.12 / %IW6
Filter byte for %1X0.13 / %IW7
Filter byte for %1X0.14 / %IW8
Filter byte for %1X0.15 / %IW9

Filter byte for %QX0.0
Filter byte for %QXO0.1
Filter byte for %QXO0.2
Filter byte for %QX0.3
Filter byte for %QX0.4
Filter byte for %QX0.5
Filter byte for %QX0.6
Filter byte for %QXO0.7
Filter byte for %QX0.8
Filter byte for %QX0.9
Filter byte for %QX0.10
Filter byte for %QX0.11
Filter byte for %QX0.12
Filter byte for %QX0.13
Filter byte for %QX0.14
Filter byte for %QX0.15

Filter value counting/pulse input 0
Filter value counting/pulse input 1
Filter value counting/pulse input 2
Filter value counting/pulse input 3
Filter value counting/pulse input 4
Filter value counting/pulse input 5
Filter value counting/pulse input 6

Filter value counting/pulse input 7

229

ExtendedController CR0232

IEC address
%QD33
%QD34
%QD35
%QD36

%MB7948

%MB7952
%MB7956

Outputs: addresses and variables (extended side) (32 outputs)

Abbreviations —chapter Note on wiring (— p. 32)
Operating modes of the inputs/outputs —chapter Possible operating modes inputs/outputs (— p. 233)

IEC address
%QX128.0
%QX128.1
%QX128.2
%QX128.3
%QX128.4
%QX128.5
%QX128.6
%QX128.7
%QX128.8
%QX128.9
%QX128.10
%QX128.11
%QX128.12
%QX128.13
%QX128.14
%QX128.15

%QX128.16
%QX128.17
%QX128.18
%QX128.19
%QX128.20
%QX128.21
%QX128.22
%QX128.23
%QX128.24
%QX128.25
%QX128.26
%QX128.27
%QX128.28

230

I/O variable
108_DFILTER
109_DFILTER
110_DFILTER
111_DFILTER

ERROR_SHORT_QO
ERROR_BREAK_QO
ERROR_CONTROL_QO

I/O variable
QO00_E
QO1_E
QO02_E
QO03_E
QO04_E
QO05_E
QO6_E
QO07_E
QO08_E
QO09_E
Q10_E
Q11 E
Q12 E
Q13 E
Q14 E
Q15 E

Q16_E
Q17 E
Q18 E
Q19 E
Q20_E
Q21 E
Q22 E
Q23 E
Q24 E
Q25 E
Q26_E
Q27 E
Q28_E

Remark

Filter value counting/pulse input 8
Filter value counting/pulse input 9
Filter value counting/pulse input 10

Filter value counting/pulse input 11

Error DWORD short circuit
Error DWORD wire break
Error DWORD current control

Remark

Binary output / PWM output channel 0
Binary output / PWM output channel 1
Binary output / PWM output channel 2
Binary output / PWM output channel 3
Binary output / PWM output channel 4
Binary output / PWM output channel 5
Binary output / PWM output channel 6
Binary output / PWM output channel 7
Binary output / PWM output channel 8
Binary output / PWM output channel 9
Binary output / PWM output channel 10
Binary output / PWM output channel 11
Binary output / PWM output channel 12
Binary output / PWM output channel 13
Binary output / PWM output channel 14
Binary output / PWM output channel 15

Binary output / PWM output channel 16
Binary output / PWM output channel 17
Binary output / PWM output channel 18
Binary output / PWM output channel 19
Binary output / PWM output channel 20
Binary output / PWM output channel 21
Binary output / PWM output channel 22
Binary output / PWM output channel 23
Binary output / PWM output channel 24
Binary output / PWM output channel 25
Binary output / PWM output channel 26
Binary output / PWM output channel 27
Binary output / PWM output channel 28

12084

ExtendedController CR0232

IEC address
%QX128.29
%QX128.30
%QX128.31

%QB356
%QB357
%QB358
%QB359
%QB360
%QB361
%QB362
%QB363
%QB364
%QB365
%QB366
%QB367
%QB368
%QB369
%QB370
%QB371

%QB372
%QB373
%QB374
%QB375
%QB376
%QB377
%QB378
%QB379
%QB380
%QB381
%QB382
%QB383
%QB384
%QB385
%QB386
%QB387

%QD97
%QD98
%QD99

%QD100

%QD101

%QD102

I/O variable
Q29 E
Q30 E
Q31_E

100_FILTER_E
I01_FILTER_E
102_FILTER_E
I03_FILTER_E
104_FILTER_E
105_FILTER_E
106_FILTER_E
107_FILTER_E
108_FILTER_E
109_FILTER_E
110_FILTER_E
111_FILTER_E
112_FILTER_E
113_FILTER_E
114_FILTER_E
115_FILTER_E

QO0_FILTER_E
QO1_FILTER_E
Q02_FILTER_E
QO3_FILTER_E
Q04_FILTER_E
QO5_FILTER_E
QO6_FILTER_E
QO7_FILTER_E
QO8_FILTER_E
Q09_FILTER_E
Q10_FILTER_E
Q11_FILTER_E
Q12_FILTER_E
Q13_FILTER_E
Q14 FILTER_E
Q15_FILTER_E

100_DFILTER_E
101_DFILTER_E
102_DFILTER_E
103_DFILTER_E
104_DFILTER_E
105_DFILTER_E

Remark

Binary output / PWM output channel 29
Binary output / PWM output channel 30
Binary output / PWM output channel 31

Filter byte for %1X128.0 / %IW130
Filter byte for %1X128.1 / %IwW131
Filter byte for %1X128.2 / %IW132
Filter byte for %1X128.3 / %IW133
Filter byte for %1X128.4 / %IW134
Filter byte for %1X128.5 / %IW135
Filter byte for %1X128.6 / %IW136
Filter byte for %1X128.7 / %IW137
Filter byte for %1X128.8 / %IW138
Filter byte for %1X128.9 / %IW139
Filter byte for %1X128.10 / %IW140
Filter byte for %1X128.11 / %IW141
Filter byte for %1X128.12 / %IW142
Filter byte for %1X128.13 / %IW143
Filter byte for %1X128.14 / %IW144
Filter byte for %1X128.15 / %IW145

Filter byte for %QX128.0
Filter byte for %QX128.1
Filter byte for %QX128.2
Filter byte for %QX128.3
Filter byte for %QX128.4
Filter byte for %QX128.5
Filter byte for %QX128.6
Filter byte for %QX128.7
Filter byte for %QX128.8
Filter byte for %QX128.9
Filter byte for %QX128.10
Filter byte for %QX128.11
Filter byte for %QX128.12
Filter byte for %QX128.13
Filter byte for %QX128.14
Filter byte for %QX128.15

Filter value counting/pulse input 0
Filter value counting/pulse input 1
Filter value counting/pulse input 2
Filter value counting/pulse input 3
Filter value counting/pulse input 4

Filter value counting/pulse input 5

231

ExtendedController CR0232

IEC address
%QD103
%QD104
%QD105
%QD106
%QD107
%QD108

%MB8036
%MB8040
%MB8044

232

I/O variable
106_DFILTER_E
107_DFILTER_E
108_DFILTER_E
109_DFILTER_E
110_DFILTER_E
111 DFILTER_E

ERROR_SHORT_QO_E
ERROR_BREAK_QO_E
ERROR_CONTROL_QO_E

Remark

Filter value counting/pulse input 6
Filter value counting/pulse input 7
Filter value counting/pulse input 8
Filter value counting/pulse input 9
Filter value counting/pulse input 10

Filter value counting/pulse input 11

Error DWORD short circuit
Error DWORD wire break
Error DWORD current control

ExtendedController CR0232

722

Content

Inputs: operating modes (standard side) (16 inputs)
Inputs: operating modes (extended side) (16 inputs)
Outputs: operating modes (standard side) (16 outputs)
Outputs: operating modes (extended side) (32 outputs)

Possible operating modes inputs/outputs

Inputs: operating modes (standard side) (16 inputs)

= this configuration value is default

Inputs Possible operating mode

100...115 IN_NOMODE
IN_DIGITAL_H
IN_DIGITAL_L
IN_CURRENT

IN_VOLTAGE10

IN_VOLTAGE30

IN_RATIO

Diagnosis

Frequency measurement
Period duration
measurement

Phase measurement

Period duration
measurement

Period duration and ratio
measurement

Counters

100...107

Detect encoder

off

plus

minus

0...20 000 pA

0...10 000 mV

0...32000 mV

0...1 000 %o

for IN_DIGITAL_H

0...30 000 Hz

0.1..5000 Hz

0.1...5000 Hz

0...30 000 Hz

0...30 000 Hz
0...5000 Hz

Set operating modes with the following function block:

FAST_COUNT (= p. 138)
FREQUENCY (— p. 140)
FREQUENCY_PERIOD (— p. 142)
INC_ENCODER (— p. 144)

INC_ENCODER_HR

INPUT_ANALOG (— p. 130)

Set with function block

INPUT_ANALOG
SET_INPUT_MODE

INPUT_ANALOG
SET_INPUT_MODE

INPUT_ANALOG
SET_INPUT_MODE

INPUT_ANALOG
SET_INPUT_MODE

INPUT_ANALOG
SET_INPUT_MODE

INPUT_ANALOG
SET_INPUT_MODE

INPUT_ANALOG
SET_INPUT_MODE

SET_INPUT_MODE

FREQUENCY
FREQUENCY_PERIOD
PHASE

PERIOD

PERIOD_RATIO

FAST_COUNT

INC_ENCODER
INC_ENCODER_HR

Counter block for fast input pulses

Function block input

MODE

MODE

MODE

MODE

MODE

MODE

MODE

DIAGNOSTICS

Measures the frequency of the signal arriving at the selected channel

Measures the frequency and the cycle period (cycle time) in [us] at the indicated channel

Up/down counter function for the evaluation of encoders

Up/down counter function for the high resolution evaluation of encoders

analogue input channel: alternatively measurement of ...

* current
* voltage

dec

16

32

Value

TRUE

15548

hex

00

01

02

04

08

10

20

233

ExtendedController CR0232

PERIOD (— p. 146)
PERIOD_RATIO (— p. 148)

PHASE (— p. 150)
SET_INPUT_MODE

234

Measures the frequency and the cycle period (cycle time) in [us] at the indicated channel

Measures the frequency and the cycle period (cycle time) in [us] during the indicated periods at
the indicated channel. In addition, the mark-to-space ratio is indicated in [%o].

Reads a pair of channels with fast inputs and compares the phase position of the signals

Assigns an operating mode to an input channel

ExtendedController CR0232

Inputs: operating modes (extended side) (16 inputs)

= this configuration value is default

Inputs Possible operating mode Set with function block Function block input

INPUT_ANALOG_E

100_E...I15_E IN_NOMODE off SET_INPUT MODE E MODE
INPUT_ANALOG_E
IN_DIGITAL_H plus SET_INPUT_MODE E MODE
. INPUT_ANALOG_E
IN_DIGITAL_L minus SET_INPUT_MODE._E MODE
INPUT_ANALOG_E
IN_CURRENT 0...20 000 pA SET_INPUT_MODE._E MODE
INPUT_ANALOG_E
IN_VOLTAGE10 0...10 000 mVv SET_INPUT_MODE_E MODE
INPUT_ANALOG_E
IN_VOLTAGE30 0...32000 mV SET_INPUT_MODE._E MODE
0 INPUT_ANALOG_E
IN_RATIO 0...1 000 %o SET_INPUT_MODE._E MODE
Diagnosis for IN_DIGITAL_H SET_INPUT_MODE_E DIAGNOSTICS
Frequency measurement FREQUENCY E
Interval measurement 0...30 000 Hz FREQUENCY_PERIOD_E
Phase measurement PHASE_E
Interval measurement 0,1...5000 Hz PERIOD_E
Period and ratio 0,1..5 000 Hz PERIOD_RATIO_E
measurement
Counter 0...30 000 Hz FAST_COUNT_E
0...30 000 Hz INC_ENCODER_E
100_E..107_E - Detect encoder 0..5000 Hz INC_ENCODER_HR_E
Set operating modes with the following function block:
FAST_COUNT_E =FAST_COUNT (— p. 138) for the extended side
FREQUENCY_E = FREQUENCY (— p. 140) for the extended side
FREQUENCY_PERIOD_E = FREQUENCY_PERIOD (— p. 142) for the extended side
INC_ENCODER_E =INC_ENCODER (— p. 144) for the extended side
INC_ENCODER_HR_E =INC_ENCODER_HR for the extended side
INPUT_ANALOG_E = INPUT_ANALOG (— p. 130) for the extended side
PERIOD_E = PERIOD (— p. 146) for the extended side
PERIOD_RATIO_E = PERIOD_RATIO (— p. 148) for the extended side
PHASE_E = PHASE (— p. 150) for the extended side
SET_INPUT_MODE_E =SET_INPUT_MODE for the extended side

dec

32

Value

TRUE

19370

hex

00

01

02

04

08

20

235

ExtendedController CR0232

Outputs: operating modes (standard side) (16 outputs)

15523

= this configuration value is default

Outputs I AR Set with function block Function block input Value
mode dec hex
Q00..Q15 OUT_DIGITAL_H plus SET_OUTPUT_MODE MODE 1 0001
OUT_DIGITAL_L minus SET_OUTPUT_MODE MODE 2 0002
Diagnosis f/‘l’; SEL}?ﬁL/:tF:nen . SET_OUTPUT MODE DIAGNOSTICS TRUE
Overload protection \fﬂ‘/’i;r?cﬂr—e?}'ﬂl’;:&”ement SET_OUTPUT MODE PROTECTION TRUE
no current measurement SET_OUTPUT_MODE CURRENT_RANGE 0 00
Current measuringrange 2A/3A SET_OUTPUT_MODE CURRENT_RANGE 1 01
4A SET_OUTPUT_MODE CURRENT_RANGE 2 02

Details — chapter Outputs Q00...Q15: permitted operating modes (— p. 237)
Set operating modes with the following function block:

OUTPUT_BRIDGE (— p. 153) H-bridge on a PWM channel pair
OUTPUT_CURRENT_CONTROL (— p. 157) Current controller for a PWMi output channel

PWM1000 (— p. 160) Initialises and configures a PWM-capable output channel
the mark-to-space ratio can be indicated in steps of 1 %o

SET_OUTPUT_MODE Sets the operating mode of the selected output channel

236

ExtendedController CR0232

Outputs Q00...Q15: permitted operating modes

Operating mode
OUT_DIGITAL_H
OUT_DIGITAL_L

Diagnosis

Overload protection

Current measuring range

PWM
PWMi
H-bridge

Operating mode
OUT_DIGITAL_H
OUT_DIGITAL_L

Diagnosis

Overload protection

Current measuring range

PWM
PWMi
H-bridge

plus
minus

for OUT_DIGITAL_H
via current measurement

for OUT_DIGITAL_H
with current measurement

2A
4A

plus
minus

for OUT_DIGITAL_H
via current measurement

for OUT_DIGITAL_H
with current measurement

2A
4A

Qo0
X

<X X | X X

Qo8

<X X X X

Qo1
X

<X X X X X

Qo9

<X X X X X

Q02
X

x| X X X

Q10

x| X X X

Qo3

< X X X X

Q11

< X X X X

Qo4

Qo5
X

Q06

19296
Qo7
X

237

ExtendedController CR0232

Outputs: operating modes (extended side) (32 outputs)

= this configuration value is default

19297

. . Value
Outputs Posdslble CReRtnY Set with function block Function block input
foce dec hex
Q00_E OUT DIGITAL_H | ET_OUTPUT MODE_E MODE 1 1
s | N plus SET_OUTPUT MODE | 0 000
OUT DIGITAL L minus SET OUTPUT MODE_E MODE 2 0002
o for OUT DIGITAL H
Diagnosis A | SET_OUTPUT MODE E DIAGNOSTICS TRUE
Overload protection forOUT.DIGITALH ot o yrpyT MODE E PROTECTION TRUE
with current measurement
no current measurement = SET_OUTPUT_MODE_E CURRENT_RANGE 0 00
Current measuring range 2A SET_OUTPUT_MODE_E CURRENT_RANGE 1 01
4A SET OUTPUT MODE_E ~ CURRENT RANGE 2 02
Q%ZE ¢ OUT DIGITAL H olus SET_OUTPUT MODE_E MODE 1 0001
Diagnosis forOUT DIGITAL H SET OUTPUT MODE_E DIAGNOSTICS FALSE

Current measuring range

2A

Set operating modes with the following function block:

SET_OUTPUT_MODE_E

CURRENT_RANGE

OUTPUT_BRIDGE_E
OUTPUT_CURRENT_CONTROL_E
PWM1000_E
SET_OUTPUT_MODE_E

= OUTPUT_BRIDGE (— p. 153) for the extended side

= OUTPUT_CURRENT_CONTROL (— p. 157) for the extended side
= PWM1000 (— p. 160) for the extended side
=SET_OUTPUT_MODE for the extended side

238

ExtendedController CR0232

Outputs Q00 _E...Q31 E: permitted operating modes

19904

Operating mode QW0 E Q1 E Q2E Q3E Q4E Q5E Q06 E QO07_E
OUT_DIGITAL_H plus X X X X X X X X
OUT_DIGITAL_L minus - X - X - - - -
Diagnosis for OUT_DIGITAL_H X X X X X X X X
via current measurement
Overload protection fo'r OUT_ DIGITAL_H X X X X X X X X
with current measurement
Current measuring range 2A X X X X X X X X
4A X X X X - - -
PWM X X X X X X X
PWMi X X X X X X X
H-bridge X X - - -
Operating mode QBE Q9E QOE Q11E Q2E Q13E QI4E Q15E
OUT_DIGITAL_H plus X X X X X X X X
OUT_DIGITAL_L minus - X - X - - - -
Diagnosis for OUT_DIGITAL_H X X X X X X X X
via current measurement
Overload protection fo'r OUT_ DIGITAL H X X X X X X X
with current measurement
Current measuring range 2A X X X X X X X X
4A X X X X - - -
PWM X X X X X X X X
PWMi X X X X X X X X
H-bridge X X - - -
Operating mode Q6 E Q7E QI1I8E Q9E Q20E Q1 E Q2E Q23E
OUT_DIGITAL_H plus X X X X X X X X
. . for OUT_DIGITAL_H
Diagnosis via voltage measurement X X X X X X X X
Operating mode Q24 E Q25E Q26E Q27E Q28E Q29E Q30E Q31_E
OUT_DIGITAL_H plus X X X X X X X X
Diagnosis for OUT_DIGITAL H X X X X X X X X

via voltage measurement

239

ExtendedController CR0232

7.3 Error tables

Content
] g =T 1 PP PP PPPRPPP 240
S) I O A A OF NN (o] o= o F PP P PP PPPRP P 240
28817
7.3.1 Error flags
28818
— chapter System flags (— p. 215)
7.3.2 Errors: CAN/ CANopen
19610
28819
— System manual "Know-How ecomatmobile”
— chapter CAN / CANopen: errors and error handling
EMCY codes: CANXx
28825

[E The indications for CANXx also apply to each of the CAN interfaces.

EMCY code Object
object 0x1003 0x1001

Byte0 Byte1 Byte2
[hex] [hex] [hex]

Manufactor specific information

Byte 3 Byte 4 Byte 5 Byte 6 Byte7 Description

00 80 1 - - - - - CANx monitoring SYNC error (only slave)
00 81 11 - - - - - CANx waming threshold (> 96)

10 81 1 - - - - - CANXx receive buffer overrun

1 81 1 - - - - - CANX transmit buffer overrun

30 81 11 - - - - - CANx guard/heartbeat error (only slave)

240

ExtendedController CR0232

EMCY codes: I/0Os, system (standard side)

2668

The following EMCY messages are sent automatically in the following cases:
» as CANopen master: if CANx_MASTER_EMCY_HANDLER (— p. 85) is called cyclically
» as CANopen slave: if CANx_SLAVE_EMCY_HANDLER (— p. 95) is called cyclically

EMCY el CHlEs Manufactor specific information
object 0x1003 0x1001
'm‘if B['zf;]‘ B[';’:‘;]z Byte3 Byted Byte5 Byte6
00 21 03 107...100 115...108
08 21 03 107...100 115...108
10 21 03 107...100 [15...108
00 23 03 Q07...Q00 Q15...Q08
08 23 03 Q07...Q00 Q15...Q08
00 31 05
00 33 05
08 33 05

00 42 09

EMCY codes: I/0Os, system (extended side)

Byte 7

Description

Inputs interruption
Inputs short circuit
Overcurrent 0...20 mA
Outputs interruption
Outputs short circuit
Terminal voltage VBBs
Terminal voltage VBBo
Terminal voltage VBBr

Excess temperature

13095

The following EMCY messages are sent automatically in the following cases:
» as CANopen master: if CANX_MASTER_EMCY_HANDLER (— p. 85) is called cyclically
» as CANopen slave: if CANx_SLAVE_EMCY_HANDLER (— p. 95) is called cyclically

EMCY code Object
object 0x1003 0x1001
Byte0 Byte1 Byte2
lhex] [hex] [hexy DVte3
107_E
01 21 o ok
107_E
0 2 o e
107_E
11 21 o ok
QU7_E
o1 8 0B 00
QU7_E
0 | 2 03 oo
10 3 05
11 305
12 305
13 33 05
18 33 05

Manufactor specific information

Byte 4 Byte 5 Byte 6
15_E
..108_E
M5_E
..108_E
15_E
..108_E
Q15_E Q23_E Q31_E
..Q08_E | ..Q16_.E ..Q24_E
Q15_E Q23_E Q31_E
..Q08_E | ..Q16_.E ..Q24_E

Byte 7

Description

Inputs interruption

Inputs short circuit

Excess current 0...20 mA

Outputs interruption

Outputs short circuit

Terminal voltage VBB1
Terminal voltage VBB2
Terminal voltage VBB3
Terminal voltage VBB4
Supply relays VBBrel

241

ExtendedController CR0232

8 Terms and abbreviations
A

Address

This is the "name" of the bus participant. All participants need a unique address so that the signals can
be exchanged without problem.

Application software

Software specific to the application, implemented by the machine manufacturer, generally containing
logic sequences, limits and expressions that control the appropriate inputs, outputs, calculations and
decisions.

Architecture
Specific configuration of hardware and/or software elements in a system.

B

Baud

Baud, abbrev.: Bd = unit for the data transmission speed. Do not confuse baud with "bits per second"
(bps, bits/s). Baud indicates the number of changes of state (steps, cycles) per second over a
transmission length. But it is not defined how many bits per step are transmitted. The hame baud can
be traced back to the French inventor J. M. Baudot whose code was used for telex machines.

1 MBd = 1024 x 1024 Bd = 1 048 576 Bd

Boot loader

On delivery ecomatmobile controllers only contain the boot loader.

The boot loader is a start program that allows to reload the runtime system and the application
program on the device.

The boot loader contains basic routines...

« for communication between hardware modules,

« for reloading the operating system.

The boot loader is the first software module to be saved on the device.

Bus
Serial data transmission of several participants on the same cable.

C

CAN

CAN = Controller Area Network
CAN is a priority-controlled fieldbus system for large data volumes. There are several higher-level
protocols that are based on CAN, e.g. 'CANopen’ or 'J1939'".

CAN stack
CAN stack = software component that deals with processing CAN messages.

242

ExtendedController CR0232

CiA
CiA = CAN in Automation e.V.

User and manufacturer organisation in Germany / Erlangen. Definition and control body for CAN and

CAN-based network protocols.
Homepage — www.can-cia.org

CiA DS 304

DS = Draft Standard
CANopen device profile for safety communication

CiA DS 401

DS = Draft Standard
CANopen device profile for binary and analogue I/O modules

CiA DS 402

DS = Draft Standard
CANopen device profile for drives

CiA DS 403

DS = Draft Standard
CANopen device profile for HMI

CiA DS 404

DS = Draft Standard
CANopen device profile for measurement and control technology

CiA DS 405

DS = Draft Standard
CANopen specification of the interface to programmable controllers (IEC 61131-3)

CiA DS 406

DS = Draft Standard
CANopen device profile for encoders

CiA DS 407

DS = Draft Standard
CANopen application profile for local public transport

Clamp 15
In vehicles clamp 15 is the plus cable switched by the ignition lock.

243

http://www.can-cia.org/

ExtendedController CR0232

COB ID

COB = Communication Object

ID = Identifier

ID of a CANopen communication object

Corresponds to the identifier of the CAN message with which the communication project is sent via the
CAN bus.

CODESYS

CODESYSP is a registered trademark of 3S — Smart Software Solutions GmbH, Germany.

'CODESYS for Automation Alliance' associates companies of the automation industry whose hardware
devices are all programmed with the widely used IEC 61131-3 development tool CODESYS®.
Homepage — www.codesys.com

CSV file

CSV = Comma Separated Values (also: Character Separated Values)
A CSV file is a text file for storing or exchanging simply structured data.
The file extension is . csv.

Example: Source table with numerical values:

value 1.0 value 1.1 value 1.2 value 1.3
value 2.0 value 2.1 value 2.2 value 2.3
value 3.0 value 3.1 value 3.2 value 3.3

This results in the following CSV file:

value 1.0;value 1.1;value 1.2;value 1.3
value 2.0;value 2.1;value 2.2;value 2.3
value 3.0;value 3.1;value 3.2;value 3.3

Cycle time

This is the time for a cycle. The PLC program performs one complete run.
Depending on event-controlled branchings in the program this can take longer or shorter.

244

http://www.codesys.com/

ExtendedController CR0232

D

Data type

Depending on the data type, values of different sizes can be stored.

Data type
BOOL
BYTE
WORD
DWORD
SINT
USINT
INT
UINT
DINT
UDINT
REAL
ULINT
STRING

DC
Direct Current

Diagnosis

min. value
FALSE
0
0
0
-128

-32 768
0
-2 147 483 648
0

-3.402823466 + 10%

0

max. value
TRUE
255
65535
4294 967 295
127
255
32767
65535
2 147 483 647
4294 967 295
3.402823466 « 103
18 446 744 073 709 551 615

size in the memory

8 bits = 1 byte
8 bits = 1 byte
16 bits = 2 bytes
32 bits = 4 bytes
8 bits = 1 byte
8 bits = 1 byte
16 bits = 2 bytes
16 bits = 2 bytes
32 bits = 4 bytes
32 bits = 4 bytes
32 bits = 4 bytes
64 Bit = 8 Bytes

number of char. + 1

During the diagnosis, the "state of health" of the device is checked. It is to be found out if and what
—faults are given in the device.

Depending on the device, the inputs and outputs can also be monitored for their correct function.

- wire break,

- short circuit,
- value outside range.

For diagnosis, configuration and log data can be used, created during the "normal" operation of the

device.

The correct start of the system components is monitored during the initialisation and start phase.
Errors are recorded in the log file.
For further diagnosis, self-tests can also be carried out.

Dither

Dither is a component of the —PWM signals to control hydraulic valves. It has shown for
electromagnetic drives of hydraulic valves that it is much easier for controlling the valves if the control
signal (PWM pulse) is superimposed by a certain frequency of the PWM frequency. This dither
frequency must be an integer part of the PWM frequency.

DLC

Data Length Code = in CANopen the number of the data bytes in a message.
For -SDO: DLC =8

245

ExtendedController CR0232

DRAM

DRAM = Dynamic Random Access Memory.

Technology for an electronic memory module with random access (Random Access Memory, RAM).
The memory element is a capacitor which is either charged or discharged. It becomes accessible via a
switching transistor and is either read or overwritten with new contents. The memory contents are
volatile: the stored information is lost in case of lacking operating voltage or too late restart.

DTC

DTC = Diagnostic Trouble Code = error code
In the protocol J1939 faults and errors well be managed and reported via assigned numbers — the
DTCs.

E

ECU

(1) Electronic Control Unit = control unit or microcontroller
(2) Engine Control Unit = control device of a engine

EDS-file

EDS = Electronic Data Sheet, e.g. for:

* File for the object directory in the CANopen master,

» CANopen device descriptions.
Via EDS devices and programs can exchange their specifications and consider them in a simplified
way.

Embedded software

System software, basic program in the device, virtually the —runtime system.

The firmware establishes the connection between the hardware of the device and the application
program. The firmware is provided by the manufacturer of the controller as a part of the system and
cannot be changed by the user.

EMC

EMC = Electro Magnetic Compatibility.

According to the EC directive (2004/108/EEC) concerning electromagnetic compatibility (in short EMC
directive) requirements are made for electrical and electronic apparatus, equipment, systems or
components to operate satisfactorily in the existing electromagnetic environment. The devices must
not interfere with their environment and must not be adversely influenced by external electromagnetic
interference.

EMCY

Abbreviation for emergency
Message in the CANopen protocol with which errors are signalled.

Ethernet

Ethernet is a widely used, manufacturer-independent technology which enables data transmission in
the network at a speed of 10...10 000 million bits per second (Mbps). Ethernet belongs to the family of
so-called "optimum data transmission” on a non exclusive transmission medium. The concept was
developed in 1972 and specified as IEEE 802.3 in 1985.

246

ExtendedController CR0232

EUC

EUC = Equipment Under Control.

EUC is equipment, machinery, apparatus or plant used for manufacturing, process, transportation,
medical or other activities (— IEC 61508-4, section 3.2.3). Therefore, the EUC is the set of all
equipment, machinery, apparatus or plant that gives rise to hazards for which the safety-related
system is required.

If any reasonably foreseeable action or inaction leads to —hazards with an intolerable risk arising from
the EUC, then safety functions are necessary to achieve or maintain a safe state for the EUC. These
safety functions are performed by one or more safety-related systems.

F

FiFo
FIFO (First In, First Out) = Operating principle of the stack memory: The data packet that was written
into the stack memory first, will also be read first. Each identifier has such a buffer (queue).

Flash memory

Flash ROM (or flash EPROM or flash memory) combines the advantages of semiconductor memory
and hard disks. Similar to a hard disk, the data are however written and deleted blockwise in data
blocks up to 64, 128, 256, 1024, ... bytes at the same time.

Advantages of flash memories
e The stored data are maintained even if there is no supply voltage.

¢ Due to the absence of moving parts, flash is noiseless and insensitive to shocks and magnetic
fields.

Disadvantages of flash memories

e A storage cell can tolerate a limited number of write and delete processes:
* Multi-level cells: typ. 10 000 cycles
« Single level cells: typ. 100 000 cycles

e Given that a write process writes memory blocks of between 16 and 128 Kbytes at the same time,
memory cells which require no change are used as well.

FRAM

FRAM, or also FeERAM, means Ferroelectric Random Access Memory. The storage operation and
erasing operation is carried out by a polarisation change in a ferroelectric layer.
Advantages of FRAM as compared to conventional read-only memories:

* non-volatile,

» compatible with common EEPROMSs, but:

* access time approx. 100 ns,

* nearly unlimited access cycles possible.

H

Heartbeat

The participants regularly send short signals. In this way the other participants can verify if a
participant has failed.

HMI
HMI = Human Machine Interface

247

ExtendedController CR0232

ID
ID = Identifier

Name to differentiate the devices / participants connected to a system or the message packets
transmitted between the participants.

IEC 61131

Standard: Basics of programmable logic controllers
* Part 1: General information
* Part 2: Production equipment requirements and tests
* Part 3: Programming languages
* Part 5: Communication
* Part 7: Fuzzy Control Programming

IEC user cycle
IEC user cycle = PLC cycle in the CODESYS application program.

Instructions

Superordinate word for one of the following terms:
installation instructions, data sheet, user information, operating instructions, device manual, installation
information, online help, system manual, programming manual, etc.

Intended use
Use of a product in accordance with the information provided in the instructions for use.

IP address

IP = Internet Protocol.
The IP address is a number which is necessary to clearly identify an internet participant. For the sake
of clarity the number is written in 4 decimal values, e.g. 127.215.205.156.

ISO 11898

Standard: Road vehicles — Controller area network

« Part 1: Data link layer and physical signalling

* Part 2: High-speed medium access unit

* Part 3: Low-speed, fault-tolerant, medium dependent interface
* Part 4: Time-triggered communication

* Part 5: High-speed medium access unit with low-power mode

ISO 11992

Standard: Interchange of digital information on electrical connections between towing and towed
vehicles

* Part 1: Physical and data-link layers

* Part 2: Application layer for brakes and running gear

* Part 3: Application layer for equipment other than brakes and running gear

* Part 4: Diagnostics

ISO 16845
Standard: Road vehicles — Controller area network (CAN) — Conformance test plan

248

ExtendedController CR0232

J

J1939
— SAE J1939

L

LED

LED = Light Emitting Diode.
Light emitting diode, also called luminescent diode, an electronic element of high coloured luminosity
at small volume with negligible power loss.

Link
A link is a cross-reference to another part in the document or to an external document.

LSB
Least Significant Bit/Byte

M

MAC-ID

MAC = Manufacturer's Address Code

= manufacturer's serial number.

—ID = Identifier

Every network card has a MAC address, a clearly defined worldwide unique numerical code, more or
less a kind of serial number. Such a MAC address is a sequence of 6 hexadecimal numbers, e.g.
"00-0C-6E-D0-02-3F".

Master

Handles the complete organisation on the bus. The master decides on the bus access time and polls
the —slaves cyclically.

Misuse

The use of a product in a way not intended by the designer.
The manufacturer of the product has to warn against readily predictable misuse in his user
information.

MMI
— HMI (= p. 247)

MRAM

MRAM = Magnetoresistive Random Access Memory
The information is stored by means of magnetic storage elements. The property of certain materials is
used to change their electrical resistance when exposed to magnetic fields.
Advantages of MRAM as compared to conventional RAM memories:
* non volatile (like FRAM), but:
* access time only approx. 35 ns,
« unlimited number of access cycles possible.

249

ExtendedController CR0232

MSB
Most Significant Bit/Byte

N

NMT

NMT = Network Management = (here: in the CANopen protocol).
The NMT master controls the operating states of the NMT slaves.

Node
This means a participant in the network.

Node Guarding

Node = here: network participant

Configurable cyclic monitoring of each —slave configured accordingly. The —master verfies if the
slaves reply in time. The slaves verify if the master regularly sends requests. In this way failed network
participants can be quickly identified and reported.

O

Obj / object
Term for data / messages which can be exchanged in the CANopen network.

Object directory

Contains all CANopen communication parameters of a device as well as device-specific parameters
and data.

OBV

Contains all CANopen communication parameters of a device as well as device-specific parameters
and data.

OPC

OPC = OLE for Process Control

Standardised software interface for manufacturer-independent communication in automation
technology

OPC client (e.g. device for parameter setting or programming) automatically logs on to OPC server
(e.g. automation device) when connected and communicates with it.

Operational

Operating state of a CANopen participant. In this mode —-SDOs, —NMT commands and —PDOs can
be transferred.

P

PC card
—PCMCIA card

250

ExtendedController CR0232

PCMCIA card

PCMCIA = Personal Computer Memory Card International Association, a standard for expansion
cards of mobile computers.
Since the introduction of the cardbus standard in 1995 PCMCIA cards have also been called PC card.

PDM

PDM = Process and Dialogue Module.
Device for communication of the operator with the machine / plant.

PDO

PDO = Process Data Object.

The time-critical process data is transferred by means of the "process data objects" (PDOs). The
PDOs can be freely exchanged between the individual nodes (PDO linking). In addition it is defined
whether data exchange is to be event-controlled (asynchronous) or synchronised. Depending on the
type of data to be transferred the correct selection of the type of transmission can lead to considerable
relief for the —CAN bus.

According to the protocol, these services are unconfirmed data transmission: it is not checked whether
the receiver receives the message. Exchange of network variables corresponds to a "1 to

n connection” (1 transmitter to n receivers).

PDU

PDU = Protocol Data Unit = protocol data unit.

The PDU is a term from the —CAN protocol —SAE J1939. It refers to a component of the target
address (PDU format 1, connection-oriented) or the group extension (PDU format 2,
message-oriented).

PES

Programmable Electronic System ...
« for control, protection or monitoring,
» dependent for its operation on one or more programmable electronic devices,
* including all elements of the system such as input and output devices.

PGN

PGN = Parameter Group Number
PGN = 6 zero bits + 1 bit reserved + 1 bit data page + 8 bit PDU Format (PF) + 8 PDU Specific (PS)
The parameter group number is a term from the —CAN protocol —-SAE J1939.

Pictogram

Pictograms are figurative symbols which convey information by a simplified graphic representation.
(— chapter What do the symbols and formats mean? (— p. 6))

PID controller

The PID controller (proportional-integral—derivative controller) consists of the following parts:
» P = proportional part

* | = integral part

« D = differential part (but not for the controller CR04nn, CR253n).

251

ExtendedController CR0232

PLC configuration

Part of the CODESYS user interface.

» The programmer tells the programming system which hardware is to be programmed.
> CODESYS loads the corresponding libraries.

> Reading and writing the periphery states (inputs/outputs) is possible.

Pre-Op

Pre-Op = PRE-OPERATIONAL mode.

Operating status of a CANopen participant. After application of the supply voltage each participant
automatically passes into this state. In the CANopen network only —-SDOs and —NMT commands
can be transferred in this mode but no process data.

Process image
Process image is the status of the inputs and outputs the PLC operates with within one —cycle.

e Atthe beginning of the cycle the PLC reads the conditions of all inputs into the process image.
During the cycle the PLC cannot detect changes to the inputs.

e During the cycle the outputs are only changed virtually (in the process image).
¢ At the end of the cycle the PLC writes the virtual output states to the real outputs.

PWM

PWM = pulse width modulation

The PWM output signal is a pulsed signal between GND and supply voltage.

Within a defined period (PWM frequency) the mark-to-space ratio is varied. Depending on the
mark-to-space ratio, the connected load determines the corresponding RMS current.

R

ratiometric

Measurements can also be performed ratiometrically. If the output signal of a sensor is proportional to
its suppy voltage then via ratiometric measurement (= measurement proportional to the supply) the
influence of the supply's fluctuation can be reduced, in ideal case it can be eliminated.

— analogue input

RAW-CAN

RAW-CAN means the pure CAN protocol which works without an additional communication protocol
on the CAN bus (on ISO/OSI layer 2). The CAN protocol is international defined according to
ISO 11898-1 and garantees in ISO 16845 the interchangeability of CAN chips in addition.

remanent

Remanent data is protected against data loss in case of power failure.

The —runtime system for example automatically copies the remanent data to a —flash memory as
soon as the voltage supply falls below a critical value. If the voltage supply is available again, the
runtime system loads the remanent data back to the RAM memory.

The data in the RAM memory of a controller, however, is volatile and normally lost in case of power
failure.

ro

RO = read only for reading only
Unidirectional data transmission: Data can only be read and not changed.

252

ExtendedController CR0232

RTC

RTC = Real Time Clock
Provides (batter-backed) the current date and time. Frequent use for the storage of error message
protocols.

Runtime system

Basic program in the device, establishes the connection between the hardware of the device and the
application program.
— chapter Software modules for the device (— p. 39)

rw

RW = read/ write
Bidirectional data transmission: Data can be read and also changed.

S

SAE J1939

The network protocol SAE J1939 describes the communication on a —CAN bus in commercial
vehicles for transmission of diagnosis data (e.g.engine speed, temperature) and control information.
Standard: Recommended Practice for a Serial Control and Communications Vehicle Network

* Part 2: Agricultural and Forestry Off-Road Machinery Control and Communication Network

* Part 3: On Board Diagnostics Implementation Guide

* Part 5: Marine Stern Drive and Inboard Spark-Ignition Engine On-Board Diagnostics Implementation
Guide

* Part 11: Physical Layer — 250 kBits/s, Shielded Twisted Pair

« Part 13: Off-Board Diagnostic Connector

* Part 15: Reduced Physical Layer, 250 kBits/s, Un-Shielded Twisted Pair (UTP)

* Part 21: Data Link Layer

* Part 31: Network Layer

« Part 71: Vehicle Application Layer

« Part 73: Application Layer — Diagnostics

* Part 81: Network Management Protocol

SD card

An SD memory card (short for Secure Digital Memory Card) is a digital storage medium that operates
to the principle of —flash storage.

SDO

SDO = Service Data Obiject.
The SDO is used for access to objects in the CANopen object directory. 'Clients' ask for the requested
data from 'servers'. The SDOs always consist of 8 bytes.

Examples:

» Automatic configuration of all slaves via —SDOs at the system start,

* reading error messages from the —object directory.
Every SDO is monitored for a response and repeated if the slave does not respond within the
monitoring time.

Self-test

Test program that actively tests components or devices. The program is started by the user and takes
a certain time. The result is a test protocol (log file) which shows what was tested and if the result is
positive or negative.

253

ExtendedController CR0232

Slave

Passive participant on the bus, only replies on request of the —master. Slaves have a clearly defined
and unigue —address in the bus.

stopped
Operating status of a CANopen participant. In this mode only —NMT commands are transferred.

Symbols

Pictograms are figurative symbols which convey information by a simplified graphic representation.
(— chapter What do the symbols and formats mean? (— p. 6))

System variable
Variable to which access can be made via IEC address or symbol name from the PLC.

T

Target

The target contains the hardware description of the target device for CODESYS, e.g.: inputs and
outputs, memory, file locations.
Corresponds to an electronic data sheet.

TCP

The Transmission Control Protocol is part of the TCP/IP protocol family. Each TCP/IP data connection
has a transmitter and a receiver. This principle is a connection-oriented data transmission. In the
TCP/IP protocol family the TCP as the connection-oriented protocol assumes the task of data
protection, data flow control and takes measures in the event of data loss. (compare: —UDP)

Template

A template can be filled with content.
Here: A structure of pre-configured software elements as basis for an application program.

U

UDP

UDP (User Datagram Protocol) is a minimal connectionless network protocol which belongs to the
transport layer of the internet protocol family. The task of UDP is to ensure that data which is
transmitted via the internet is passed to the right application.

At present network variables based on —CAN and UDP are implemented. The values of the variables
are automatically exchanged on the basis of broadcast messages. In UDP they are implemented as
broadcast messages, in CAN as —»PDOs.

According to the protocol, these services are unconfirmed data transmission: it is not checked whether
the receiver receives the message. Exchange of network variables corresponds to a "1 to

n connection" (1 transmitter to n receivers).

Use, intended
Use of a product in accordance with the information provided in the instructions for use.

254

ExtendedController CR0232

W

Watchdog

In general the term watchdog is used for a component of a system which watches the function of other
components. If a possible malfunction is detected, this is either signalled or suitable program
branchings are activated. The signal or branchings serve as a trigger for other co-operating system
components to solve the problem.

255

ExtendedController CR0232

9 Index
A
ADOUL thiS MANUAL ..o s 5
Activate the PLC configuration (e.g. CR0033)cccoocuvevnrurieinerirenins 55
AAIESS ... 238
Address assignment and 1/0 operating modes............ccoucreeneenernnes 222
Addresses / variables of the 1/0S ... 223
Allowable configurations for Q00_MODE...Q15_MODE...........c...c.c..... 62
Allowable configurations for Q00_MODE_E...Q15_MODE_E.............. 62
Allowable configurations for Q16_MODE_E...Q31_MODE_E.............. 63
ANAIOGUE INPULS ..ot 24
ADPPENGIX ..o 213
Application ProGram...........cceeeeuereriereueieensiseeseiesiseisesessesssseseesesseneees 38
ApPlCatioN SOfWATE..........cvucviericrirerircrirerieereeire e 238
ATCRIIECIUT ... 238
Automatic data DaCKUDccervereieiriee s 191
Availability OF PWM........c.criereereceeeeeeecseeseesseeesssesssesesesssessssnenns 64
AVaIIADIE MEMOTY ..ottt 17
B
BAU. ... 238
Binary and PWM OUPULS..........ccuerurriirirecnecnecneesecneeinecsnecneesnens 63
BINAMY INPULScoooeciiee s 24
BiNary OUIPULScurricicirecrecreccreeecee s 27
BOOI0AAET ..ot 238
BOOHOAAET........coocirceccce s 38
Bootloader State..........c.cueiin s 46
BUS .ot 238
C
Calculations and conversions in the application program 40
CAN L.

interfaces and protocols
CAN / CANopen

errors and error handling 211
CAN INEEIACES.ou vttt 36
CAN SEACK....eeveereereeriacririeriesiessest bttt sttt ettt 238
CANX-ootrt ettt 76
CANX_BAUDRATEooveeeerreereesneesseeeseessesesssessesssssesssesssssssssnees 77
CANX_BUSLOAD ...t sssesssssesssssssessseens 78
CANX_DOWNLOADIDcouvirrerrirersiecesesmsesssessseesessesssesssessenenns 80
CANX_ERRORHANDLER.........ooccreereerererneereeesssessesssesssesssssssssnees 81
CANX_MASTER_EMCY_HANDLERccosvimmrrierierinerieerinecsnenns 86
CANX_MASTER_SEND_EMERGENCYcconmrerrrrrmreenererreerneeennnns 87
CANX_MASTER _STATUScottrtrrirrrrierireenineesiessssesesesssenssesseenns 89
CANX_RECEIVE............nsvenrereenseiseessseeesssessssesssssssssssssssesssssssssnees 82
CANX_SDO_READ........oovemrerrermeerreeesseesssessssssssessssssssssssssssssssses 103
CANX_SDO_WRITEoeveeerirerimerieniseceieessessssesssesesssssssssesessnn 105
CANX_SLAVE_EMCY_HANDLER........ccoovmrrerrrernrerneeinssessneesneessnees 95
CANX_SLAVE_NODEID.......commererrirermmererersmessseseseesessessseessssesssenns 96
CANX_SLAVE_SEND_EMERGENCYosvrummrermrermreeseeeeneesnnessnnees 97
CANX_SLAVE_SET_PREOP........ccccomrrrererrmireeeinssiieeriseeseenisesssenns 99
CANX_SLAVE_STATUScorrierirrirecierisesssesssesssesesessesssssn 100
CANX_TRANSMIT ..oooorerrrereeeseessesssseeessessessssessssssssssssessssssssnees 84
CHECK _DATA..... oottt ssssesss st 202
CA ottt 238
CIADS 304 ..o eess st 239
CIADS 407 ..ot 239

256

CIADS 402.......oooevirieceeeieirieseeesie s sss 239
CIADS 403 ..ot 239
CIADS 404 ... 239
CIADS 405 ..ot sssss s s 239
CIADS 406oovererirceieeieeriesesesse s sesssessssessesssee 239
CiA DS 407

ClAMP 15,
COB ID...ooovirircieriecsiesissesi st
CODESYS

CODESYS fUNCHONS.......cvvurrirererresreriseeeesseessessseesesessesseessssenes 49
Configuration of the inputs and outputs (default setting)c........ 56
CONfIGUIBLIONS.vooveeeeeiiiierie st
CONfIGUE INPULS.....cvouveeieniieieeeiesiesie s
CONfIGUIE OULPULS ...o.vvevenieieriri s
Configure the hardware filter

Configure the software filters of the INPULS...........cccvvervrrncieireiiennn. 60
Configure the software filters of the outpULs...........cccvienienierniisiinens 63
Connect terminal VBB15 to the ignition SWitchcccoeevivveiciinnnn. 18
Control the LED in the application programcccoeeeeeenceeirennn. 33
CONTROL_OCCouvirrvirireriereiesnissessssiseessesssssssessssesesesssnes 163
COPYIGNE. ..ottt 5
Creating application Programc.cceeeenienseneessessessssesneens 41
CSV file

Current control with PWM (= PWMI)ocunivniininiiineineieeiseineens 64
CYCIB HIME ..ottt 240
D

Damping of OVErSNOOLvuuurieriiiieiiiieiieeeeeerieesesse s 175
DAt tYPe....eceee 240
DIC oottt 240
DEBUG MOGEeoooerreeercrneeeseeeseesssessseeessessssessssssssssssssssssesssssssses 49
DELAY .ottt 176

Description..... 76, 77, 78, 80, 81, 82, 84, 86, 87, 89, 95, 96, 97, 99, 100,
103, 105, 108, 109, 111, 113, 115, 117, 120, 121, 122, 123, 125, 127,
130, 133, 135, 136, 138, 142, 144, 146, 148, 150, 153, 156, 157, 160,
163, 165, 168, 171, 173, 176, 177, 179, 181, 183, 185,186, 188, 192,
194,195, 197, 198, 199, 200, 202, 204, 205, 206, 207, 208

DESCIPHON ...t 140
Diagnosis
binary outputs (via current measurement)..........c..coeeeeeneeeneeneinerineens 28,29
overload (via current measurement) 29,30
short circuit (via current measurement) 29,30
wire break (via current measurement) 29,30
DIAGNOSIS ...t 240
Diagnosis and error handling...........cocveveeeeneenenenenenereeseneseenns 210
DINEE oottt 241
DLC ettt 241
DRAM ..ottt st 241
DTC ettt 241
E
ECU oottt et st s 241
EDSHI ..vvverieie ettt 241
Embedded SOftWare..........ccc.oviieiiiieieieeeeseseeeeeieeieeas 241
EMC ettt 241
EMCY oottt 242
EMCY codes
CANX 236
1/0s, system (extended side) 237
1/0s, system (standard side) 236
Error flags
Error tables

ExtendedController CR0232

Errors
CAN / CANopen 236
EthemMet ... 242
BUC oottt 242
Example
CANXx_MASTER_SEND_EMERGENCY 88
CANXx_MASTER_STATUS 92
CANx_SLAVE_SEND_EMERGENCY 98
CHECK_DATA 203
NORM (1) 134
NORM (2) 134
NORM_HYDRAULIC 174
F
FaStINPULS ..o 59
FAST_COUNT ...ttt stesees e ses st sas s ssessss s sennans 138

File SYSEEM.......oieicccc e 189
FIaSh MEMOTY ..o 189, 242
FLASHREADoorvimreerecereeesseeessessseesssseessssssssessssssssesssssesssssssseons 194
FLASH-SPEICHET ...ttt 17
FLASHWRITE.......covireereeereisseeersesseesssesssesssssessssesssessssesssessssenns 195

FRAMREAD........ooooeieeireiecinseseeeisssessess e ssesesssessssssssssssssssssesssssssssesans 197
FRAMWRITE ..ottt 198
FREQUENCY ...ttt ssesssssssesssssss s ssesssssnsssesans 140
FREQUENCY _PERIODoteiiiiiniiiineineiseiseiseeseessesssssseeseeens 142
Function configuration in general ... 56
Function configuration of the inputs and ouUtpULSc.ccccveereineinns 58
Function elements
adapting analogue values 132
CAN layer 2 75
CANopen master 85
CANopen SDOs 102
CANopen slave 94
controllers 175
counter functions for frequency and period measurement.............cc....oc.... 137
data access and data check 201
device temperature 187
hydraulic control 162
measuring / setting of time 184
Optimising the PLC cycle via processing interruptsc..cooeevenervenens 124
processing input values 129
PWM functions 152
SAE J1939 107
saving, reading and converting data in the memoryc.ccoueevverrernnens 189
serial interface 119
software reset 182
G
GET_IDENTITY <ottt sttt 204
GET_IDENTITY_EIOS ..ottt sss 205
H
Hardware desCription.............occeeeeierieineineeeeee s 15
Hardware StrUCHUE ..o s 16
HEAMDBAL ..o 243
History of the instructions (CR0232)coceeurrumerneeneieierseineiseeenenns 7

How is this documentation Structured?ccooevevverrereireieresseienens 6

JEC 81137 1ottt 243
IEC USET CYCIB......ouiercircircieciecieiiece st 243
ifM fUNCtion €1EMENES........c..ovuieeier e 69
ifm function elements for the device CR0232ccccovvvrvevnirniirniinnens 74
ifm libraries for the device CR0232
INC_ENCODER......ccotiiieiiniieiieeiseiseissisesssssessesssssssssssesssees
Information concerning the device .
INIT State (RESE) ..uvvueruerreereiieireeseee s
INPUE Group 100...115. ... s
Input group 100_E...115_E ..o
INPUT_ANALOGotiieiiriiiieeieeiseieeiseiseissssesssssessssssssssssssses
Inputs
addresses and variables (extended side) (16 inputs)
addresses and variables (standard side) (16 inputs)
operating modes (extended side) (16 inputs).......
operating modes (standard side) (16 inputs)... .
INPULS (1ECANOIOGY) ...
INSHIUCHIONS ...
Intended use....
Interface desCriptioncc.ceeeeieiseisces e
Internal structure parameters ...
IP @AAIESS....ooceeerecieieieeieeese ettt
ISO 1898......ooieeeeieciecteet ettt
ISO 11992ttt
ISO BBAD.......coeieectetct ettt

JT939_X oo 108
J1939_X_GLOBAL_REQUESTcccoovimmriiimriiinnsiisssissssiisscsiionns 109
JT1939_X_RECEIVE ... 1M
J1939_X_RESPONSEccoooiiriiiniinisssiissssess oo 113
J1939_x_SPECIFIC_REQUESTcoorririrerrcemreriseeereneesei 115
J1939_X_TRANSMIT ... 117
JOYSTICK_O ..
JOYSTICK T oo
JOYSTICK_2 ...

L
Latching

LIDFAMIES ..o 39
Library ifm_CR0232_CANopenxMaster_Vxxyyzz.LIB...........ccccrvvunnec 72
Library ifm_CR0232_CANopenxSlave_Vxxyyzz.LIB..........ccccccccrnuun. 72
Library ifm_CR0232_J1939_VXXyyzz.LIB.......cccovrrrmrrrirrrrrrrrerrirrinns 73
Library ifm_CR0232_V010003.LIB........cccocvumrverereremieerrrcrieeneneeeins 70

Manual data StOrage.............cvveeeueerrerneeeeeeseeeeseeesseeseeseseeenns
MESEEN ...
MEMCPY ..o esssssseeesessssssesesssss s
MEMORY_RETAIN_PARAM

257

ExtendedController CR0232

MEMSET ..ottt seessesssensens 200
MISUSE ...ttt 244
MUt 244
MONItOrING CONCEPE ... 20
Monitoring of the supply voltages VBBX........c.coccveereeneeneeinecneenneinens 20

MRAM.

NORM_DINT w.oovitrirerirerisresiesesesssesssessseesssesssessessssesssesssessens 135
NORM_HYDRAULICc.everirririerieeieeeetiesiseessessssssssssesesseenes 173
NORM_REALoourrirrrireriririesiiessinessssssiessssessssessessssesssesssessons 136
NOLE ON WIFING ..o 31
Note the CYCle IME! ..o 41
Notes
serial number "
TEST inputs 12,48
O
OB/ ODJECL. ... vttt 245
ODbjJECE AIFECIONY.....vevervisreircrireeriseriereeseeeess et 245
OBV ittt 245
OPC ..ot 245
Operating MOGEScvurerreirieieieieeieeiese e esseenes 47
Operating principle of the delayed switch-offccoccovernirnirniincen. 18
Operating principle of the monitoring concept...........cocevevnevnerrneenenns 22
Operating Statescovurrerrerriniere s 44
application program is available 46
application program is not available 45
runtime system is not available 44
OPErationalc.ocvuurreuririeriricrieei ettt 245
Output group Q0 (QO0...15).....crvurerrireireirneirneiieeereeeseeeseeeseeeseesseeaeees 27
Output group Q00_E...Q15_E ... 29
Output group Q16_E...Q31_E ... 30
OUTPUT_BRIDGEcouiiiriricrieieriesiessesssesssesssessesssessesesenenes 153
OUTPUT_CURRENTevvtmirimrrirerieriseciesssesssesssesssesssessesessnn 156
OUTPUT_CURRENT_CONTROLcoouererrmimreememieriereseerenesen 157

Outputs

addresses and variables (extended side) (32 outputs)

addresses and variables (standard side) (16 outputs)

operating modes (extended side) (32 outputs)

operating modes (standard side) (16 outputs)
Outputs (LEChNOIOGY) ...cuvvuveurierieeiieiieiieie s
Outputs Q00...Q15

permitted operating modes 233
Outputs Q00_E...Q31_E

permitted operating modes 234
Overview

documentation modules for 5

P

Parameters of the inputs ...76, 77, 78, 80, 81, 82, 84, 86, 87, 89, 95, 96,
97, 99, 100, 103, 105, 108, 110, 112, 113, 115, 117,121, 122, 123,
126, 128, 130, 133, 135, 136, 138, 141, 143, 144, 146, 149, 150, 154,
156, 158, 161, 163, 166, 169, 171, 173, 176, 177, 179, 181, 183,
188,192, 194, 195, 197, 198, 199, 200, 202, 204, 205, 206, 207, 208

258

Parameters of the outputs78, 83, 84, 86, 90, 95, 101, 104, 106, 110,
112, 114, 116, 118, 120, 121, 131, 133, 135, 136, 139, 141, 143, 145,
147, 149, 151, 155, 156, 159, 164, 167, 170, 172, 174, 176, 177, 180,
181, 185, 186, 188, 202, 204, 205

PC AU ...ttt s 246

PICHOGIaM ... 246
PID CONIONET ..o 246

Principle block diagram ... 17
Principle of the H-Dridge ..o 153
ProCESS IMAGE ..ottt 247
Program example to CAN1_MASTER_STATUS.........cccccomenmennernennens 92
Programming notes for CODESY'S Projectscuceeeerneeneeneenens 40
P T s
PWIM ettt st ssss s
PWM outputs ..
PWMA000oocverrerrerirceieriseesssessseeseessseeseeesessesesessesesessseseons
R
TAHOMELTIC ...t 247
RAW-CAN ..ottt 247
Reaction in case 0f @n €I10rcc.verureeernreerneisereesesenenns 210
Recommended SEtting...........ccererieerenieieeiieieeieeeeeeesseeseeieenes 180
Recommended SEtliNgS ... 178
Reference voltage OuUtPULc.veeueineineeninceeeeeeees 22
Reinstall the runtime SyStem ... 52
Relay

important notes! 211
REIAYS ... e 16

important notes! 19
TEMANENL. ...ttt ess e 247
ReSpONSe t0 SYSIEM EITOIS.........cvuvieiereieeeireie e 211
REtaiN VaMADIESvvurvriciriee et 66

S

SAE J1939 ..ottt 248
Safety INSUCHONScouiieriiiiii e 10
Safety instructions about Reed relays.... 31,59
SaVE DOO PIOJECE.......veereeieciiciii e 42
SD CAM..oouverriririe ittt 248
SDO ..ot 248

ExtendedController CR0232

SIFABSE.....ooeeeer 248
Serial INErfACE ... 35
SERIAL_MODE ... sssseesseens 49
SERIAL_PENDING.........cooooeimeeimerirnieneeensessesessesssssssssssessssessns 120
SERIAL_RX ..o tirierieeeierieseissiesessesissessesssseessessssesssesssssssnen
SERIAL_SETUP.
SERIAL_TX woooerereereeessessseessesssssssseesssessssssssesssesssssssssssessna
Set up the programming SYStEMcc.veeeereerneerneeneeneineeneeeseeeees 54
Set up the programming system manually..........c.ccccoveeneeneenrinrnnnnes 55
Set up the programming system via templates...........cccooeeveernernieneens 56
Set up the runtime SYSteM.........c.coerrnrnrininsererenes
Set Up the target
SET_DEBUG........ovieierrieiriereieeiersisesissesiessssesnsessssesssesssssssnon
SET_IDENTITY oooiteereceieeiieeesseeieessseesssesssesssssessessssssssssssssssnae
SET_INTERRUPT _|.......
SET_INTERRUPT_XMScovtiririiirienierieniesiesiensensensenesenens

SIave INfOrMationcc.cvivviveicieeeeceee e
SOFTRESET ...ttt sens

Software desCription ..o eeeeeesessseeees
Software modules for the device.....

Start CONAItIONS ...t
Start-up behaviour of the controller
SEAIUS LED ...ttt

STOP SEAE ...vvueeeeeiieiie it
SOPPE ..ottt
Storage types for data backupc.ccevererreriernerinererereriene
Structure Emergency_MeSSagec.ovureerrineirneeneineineineesseineens
Structure NOe SEALUSc.ovververieiieeeeeee e
Structure of CANX_EMERGENCY_MESSAGEccccooconiiniiniinnens 91
Structure of CANx_NODE_STATE
SYMDOIS ..ottt bbbttt
System deSCHPHONcvvierierieie s
SYSIEM lAGS ...vevvvvrerrieeiricriii ettt
16 inputs and 16 outputs (standard side) 219
16 inputs and 32 outputs (extended side) 220
CAN 214
error flags (extended side) 216
error flags (standard side) 215
SAE-J1939 215
status LED (extended side) 218
status LED (standard side) 217
voltages (extended side) 219
voltages (standard side) 218
SYSTEM STOP StALEcvvuevercrercrireriseceserseesiessseesesesseessssesssenns 47
SYSIEM VAMADIEcvovveerricrieiitieeteet ettt 249
SYSIEM VAMADIESooeveieeiiriieiieiie ettt 56
T
TAIGEL. ...t 249
TCP e 249
TEMPERATURE........cooiiinercsescsesse e 188
TEMPIAE ... 249
Terminal voltage VBBs falls below the limit value of 10 V 20
Terminal voltage VBBx falls below the limit value of 525V 20
TEST MOGE.....ouveeiiierieieie bbbt
TIMER_READ

TIMER_READ_US........oooirirrircieiecisesisesiesssessseseseseesessenes 186
U

UDP .ttt 249
Update the runtime SyStem...........cc.ovvncrenininnerssreeseseenes 53
USB INEEITACE. ... s 35
USE, INtENAEM. ... 249
Using ifM dOWNIOATET ..o 43
Using ifm maintenance t00l ... 43
\%

ValEDIES ..o 66
Verify the iNStallationccueenerceecsee s 53
W

WaLCNAOG ... 250
Watchdog DENAVIOUT ... 49
What do the symbols and formats mean?...........cccocoveernerneenerncerneennens 6
What previous knowledge is required?c.cocererererirerererncrnerncnens 11

259

	1 About this manual
	1.1 Copyright
	1.2 Overview: documentation modules for
	1.3 What do the symbols and formats mean?
	1.4 How is this documentation structured?
	1.5 History of the instructions (CR0232)

	2 Safety instructions
	2.1 Please note!
	2.2 What previous knowledge is required?
	2.3 Start-up behaviour of the controller
	2.4 Notes: serial number
	2.5 Notes: TEST inputs

	3 System description
	3.1 Information concerning the device
	3.2 Hardware description
	3.2.1 Hardware structure
	Start conditions
	Relays
	Principle block diagram
	Available memory
	FLASH-Speicher
	SRAM
	FRAM

	3.2.2 Operating principle of the delayed switch-off
	Connect terminal VBB15 to the ignition switch
	Latching

	3.2.3 Relays: important notes!
	3.2.4 Monitoring concept
	Monitoring of the supply voltages VBBx
	Terminal voltage VBBx falls below the limit value of 5.25 V
	Terminal voltage VBBs falls below the limit value of 10 V

	Operating principle of the monitoring concept
	Reference voltage output

	3.2.5 Inputs (technology)
	Analogue inputs
	Binary inputs
	Input group I00...I15
	Input group I00_E...I15_E

	3.2.6 Outputs (technology)
	Binary outputs
	PWM outputs
	Output group Q0 (Q00...15)
	Diagnosis: binary outputs (via current measurement)
	Diagnosis: overload (via current measurement)
	Diagnosis: wire break (via current measurement)
	Diagnosis: short circuit (via current measurement)

	Output group Q00_E...Q15_E
	Diagnosis: binary outputs (via current measurement)
	Diagnosis: overload (via current measurement)
	Diagnosis: wire break (via current measurement)
	Diagnosis: short circuit (via current measurement)

	Output group Q16_E...Q31_E

	3.2.7 Note on wiring
	3.2.8 Safety instructions about Reed relays
	3.2.9 Feedback in case of externally supplied outputs
	3.2.10 Status LED
	Control the LED in the application program

	3.3 Interface description
	3.3.1 Serial interface
	3.3.2 USB interface
	3.3.3 CAN interfaces
	CAN: interfaces and protocols

	3.4 Software description
	3.4.1 Software modules for the device
	Bootloader
	Runtime system
	Application program
	Libraries

	3.4.2 Programming notes for CODESYS projects
	FB, FUN, PRG in CODESYS
	Calculations and conversions in the application program
	Note the cycle time!
	Creating application program
	Save boot project
	Using ifm downloader
	Using ifm maintenance tool

	3.4.3 Operating states
	Operating states: runtime system is not available
	Operating states: application program is not available
	Operating states: application program is available
	Bootloader state
	INIT state (Reset)
	STOP state
	RUN state
	SYSTEM STOP state

	3.4.4 Operating modes
	TEST mode
	Notes: TEST inputs

	SERIAL_MODE
	DEBUG mode

	3.4.5 Performance limits of the device
	Watchdog behaviour
	CODESYS functions

	4 Configurations
	4.1 Set up the runtime system
	4.1.1 Reinstall the runtime system
	4.1.2 Update the runtime system
	4.1.3 Verify the installation

	4.2 Set up the programming system
	4.2.1 Set up the programming system manually
	Set up the target
	Activate the PLC configuration (e.g. CR0033)

	4.2.2 Set up the programming system via templates

	4.3 Function configuration in general
	4.3.1 Configuration of the inputs and outputs (default setting)
	4.3.2 System variables

	4.4 Function configuration of the inputs and outputs
	4.4.1 Configure inputs
	Safety instructions about Reed relays
	Fast inputs
	Configure the software filters of the inputs
	Configure the hardware filter

	4.4.2 Configure outputs
	Allowable configurations for Q00_MODE...Q15_MODE
	Allowable configurations for Q00_MODE_E...Q15_MODE_E
	Allowable configurations for Q16_MODE_E...Q31_MODE_E
	Configure the software filters of the outputs
	Binary and PWM outputs
	Availability of PWM
	Current control with PWM (= PWMi)

	4.5 Variables
	4.5.1 Retain variables
	4.5.2 Network variables

	5 ifm function elements
	5.1 ifm libraries for the device CR0232
	5.1.1 Library ifm_CR0232_V010003.LIB
	5.1.2 Library ifm_CR0232_CANopenxMaster_Vxxyyzz.LIB
	5.1.3 Library ifm_CR0232_CANopenxSlave_Vxxyyzz.LIB
	5.1.4 Library ifm_CR0232_J1939_Vxxyyzz.LIB
	5.1.5 Library ifm_hydraulic_32bit_Vxxyyzz.LIB

	5.2 ifm function elements for the device CR0232
	5.2.1 Function elements: CAN layer 2
	CANx
	Description
	Parameters of the inputs

	CANx_BAUDRATE
	Description
	Parameters of the inputs

	CANx_BUSLOAD
	Description
	Parameters of the inputs
	Parameters of the outputs

	CANx_DOWNLOADID
	Description
	Parameters of the inputs

	CANx_ERRORHANDLER
	Description
	Parameters of the inputs

	CANx_RECEIVE
	Description
	Parameters of the inputs
	Parameters of the outputs

	CANx_TRANSMIT
	Description
	Parameters of the inputs
	Parameters of the outputs

	5.2.2 Function elements: CANopen master
	CANx_MASTER_EMCY_HANDLER
	Description
	Parameters of the inputs
	Parameters of the outputs

	CANx_MASTER_SEND_EMERGENCY
	Description
	Parameters of the inputs
	Example: CANx_MASTER_SEND_EMERGENCY

	CANx_MASTER_STATUS
	Description
	Parameters of the inputs
	Parameters of the outputs
	Internal structure parameters
	Structure of CANx_EMERGENCY_MESSAGE
	Structure of CANx_NODE_STATE

	Example: CANx_MASTER_STATUS
	Slave information
	Program example to CAN1_MASTER_STATUS
	Structure node status
	Structure Emergency_Message

	5.2.3 Function elements: CANopen slave
	CANx_SLAVE_EMCY_HANDLER
	Description
	Parameters of the inputs
	Parameters of the outputs

	CANx_SLAVE_NODEID
	Description
	Parameters of the inputs

	CANx_SLAVE_SEND_EMERGENCY
	Description
	Parameters of the inputs
	Example: CANx_SLAVE_SEND_EMERGENCY

	CANx_SLAVE_SET_PREOP
	Description
	Parameters of the inputs

	CANx_SLAVE_STATUS
	Description
	Parameters of the inputs
	Parameters of the outputs

	5.2.4 Function elements: CANopen SDOs
	CANx_SDO_READ
	Description
	Parameters of the inputs
	Parameters of the outputs

	CANx_SDO_WRITE
	Description
	Parameters of the inputs
	Parameters of the outputs

	5.2.5 Function elements: SAE J1939
	J1939_x
	Description
	Parameters of the inputs

	J1939_x_GLOBAL_REQUEST
	Description
	Parameters of the inputs
	Parameters of the outputs

	J1939_x_RECEIVE
	Description
	Parameters of the inputs
	Parameters of the outputs

	J1939_x_RESPONSE
	Description
	Parameters of the inputs
	Parameters of the outputs

	J1939_x_SPECIFIC_REQUEST
	Description
	Parameters of the inputs
	Parameters of the outputs

	J1939_x_TRANSMIT
	Description
	Parameters of the inputs
	Parameters of the outputs

	5.2.6 Function elements: serial interface
	SERIAL_PENDING
	Description
	Parameters of the outputs

	SERIAL_RX
	Description
	Parameters of the inputs
	Parameters of the outputs

	SERIAL_SETUP
	Description
	Parameters of the inputs

	SERIAL_TX
	Description
	Parameters of the inputs

	5.2.7 Function elements: Optimising the PLC cycle via processing interrupts
	SET_INTERRUPT_I
	Description
	Parameters of the inputs

	SET_INTERRUPT_XMS
	Description
	Parameters of the inputs

	5.2.8 Function elements: processing input values
	INPUT_ANALOG
	Description
	Parameters of the inputs
	Parameters of the outputs

	5.2.9 Function elements: adapting analogue values
	NORM
	Description
	Parameters of the inputs
	Parameters of the outputs
	Example: NORM (1)
	Example: NORM (2)

	NORM_DINT
	Description
	Parameters of the inputs
	Parameters of the outputs

	NORM_REAL
	Description
	Parameters of the inputs
	Parameters of the outputs

	5.2.10 Function elements: counter functions for frequency and period measurement
	FAST_COUNT
	Description
	Parameters of the inputs
	Parameters of the outputs

	FREQUENCY
	Description
	Parameters of the inputs
	Parameters of the outputs

	FREQUENCY_PERIOD
	Description
	Parameters of the inputs
	Parameters of the outputs

	INC_ENCODER
	Description
	Parameters of the inputs
	Parameters of the outputs

	PERIOD
	Description
	Parameters of the inputs
	Parameters of the outputs

	PERIOD_RATIO
	Description
	Parameters of the inputs
	Parameters of the outputs

	PHASE
	Description
	Parameters of the inputs
	Parameters of the outputs

	5.2.11 Function elements: PWM functions
	OUTPUT_BRIDGE
	Description
	Principle of the H-bridge
	Parameters of the inputs
	Parameters of the outputs

	OUTPUT_CURRENT
	Description
	Parameters of the inputs
	Parameters of the outputs

	OUTPUT_CURRENT_CONTROL
	Description
	Parameters of the inputs
	Parameters of the outputs

	PWM1000
	Description
	Parameters of the inputs

	5.2.12 Function elements: hydraulic control
	CONTROL_OCC
	Description
	Parameters of the inputs
	Parameters of the outputs

	JOYSTICK_0
	Description
	Parameters of the inputs
	Parameters of the outputs

	JOYSTICK_1
	Description
	Parameters of the inputs
	Parameters of the outputs

	JOYSTICK_2
	Description
	Parameters of the inputs
	Parameters of the outputs

	NORM_HYDRAULIC
	Description
	Parameters of the inputs
	Parameters of the outputs
	Example: NORM_HYDRAULIC

	5.2.13 Function elements: controllers
	Setting rule for a controller
	Setting control
	Damping of overshoot

	DELAY
	Description
	Parameters of the inputs
	Parameters of the outputs

	PID1
	Description
	Parameters of the inputs
	Parameters of the outputs
	Recommended settings

	PID2
	Description
	Parameters of the inputs
	Parameters of the outputs
	Recommended setting

	PT1
	Description
	Parameters of the inputs
	Parameters of the outputs

	5.2.14 Function elements: software reset
	SOFTRESET
	Description
	Parameters of the inputs

	5.2.15 Function elements: measuring / setting of time
	TIMER_READ
	Description
	Parameters of the outputs

	TIMER_READ_US
	Description
	Parameters of the outputs

	5.2.16 Function elements: device temperature
	TEMPERATURE
	Description
	Parameters of the inputs
	Parameters of the outputs

	5.2.17 Function elements: saving, reading and converting data in the memory
	Storage types for data backup
	Flash memory
	FRAM memory

	File system
	Automatic data backup
	MEMORY_RETAIN_PARAM
	Description
	Parameters of the inputs

	Manual data storage
	FLASHREAD
	Description
	Parameters of the inputs

	FLASHWRITE
	Description
	Parameters of the inputs

	FRAMREAD
	Description
	Parameters of the inputs

	FRAMWRITE
	Description
	Parameters of the inputs

	MEMCPY
	Description
	Parameters of the inputs

	MEMSET
	Description
	Parameters of the inputs

	5.2.18 Function elements: data access and data check
	CHECK_DATA
	Description
	Parameters of the inputs
	Parameters of the outputs
	Example: CHECK_DATA

	GET_IDENTITY
	Description
	Parameters of the inputs
	Parameters of the outputs

	GET_IDENTITY_EIOS
	Description
	Parameters of the inputs
	Parameters of the outputs

	SET_DEBUG
	Description
	Parameters of the inputs

	SET_IDENTITY
	Description
	Parameters of the inputs

	SET_PASSWORD
	Description
	Parameters of the inputs

	6 Diagnosis and error handling
	6.1 Diagnosis
	6.2 Fault
	6.3 Reaction in case of an error
	6.4 Relay: important notes!
	6.5 Response to system errors
	6.6 CAN / CANopen: errors and error handling

	7 Appendix
	7.1 System flags
	7.1.1 System flags: CAN
	7.1.2 System flags: SAE-J1939
	7.1.3 System flags: error flags (standard side)
	7.1.4 System flags: error flags (extended side)
	7.1.5 System flags: status LED (standard side)
	7.1.6 System flags: status LED (extended side)
	7.1.7 System flags: voltages (standard side)
	7.1.8 System flags: voltages (extended side)
	7.1.9 System flags: 16 inputs and 16 outputs (standard side)
	7.1.10 System flags: 16 inputs and 32 outputs (extended side)

	7.2 Address assignment and I/O operating modes
	7.2.1 Addresses / variables of the I/Os
	Inputs: addresses and variables (standard side) (16 inputs)
	Inputs: addresses and variables (extended side) (16 inputs)
	Outputs: addresses and variables (standard side) (16 outputs)
	Outputs: addresses and variables (extended side) (32 outputs)

	7.2.2 Possible operating modes inputs/outputs
	Inputs: operating modes (standard side) (16 inputs)
	Inputs: operating modes (extended side) (16 inputs)
	Outputs: operating modes (standard side) (16 outputs)
	Outputs Q00...Q15: permitted operating modes

	Outputs: operating modes (extended side) (32 outputs)
	Outputs Q00_E...Q31_E: permitted operating modes

	7.3 Error tables
	7.3.1 Error flags
	7.3.2 Errors: CAN / CANopen
	EMCY codes: CANx
	EMCY codes: I/Os, system (standard side)
	EMCY codes: I/Os, system (extended side)

	8 Terms and abbreviations
	Address
	Application software
	Architecture
	Baud
	Boot loader
	Bus
	CAN
	CAN stack
	CiA
	CiA DS 304
	CiA DS 401
	CiA DS 402
	CiA DS 403
	CiA DS 404
	CiA DS 405
	CiA DS 406
	CiA DS 407
	Clamp 15
	COB ID
	CODESYS
	CSV file
	Cycle time
	Data type
	DC
	Diagnosis
	Dither
	DLC
	DRAM
	DTC
	ECU
	EDS-file
	Embedded software
	EMC
	EMCY
	Ethernet
	EUC
	FiFo
	Flash memory
	FRAM
	Heartbeat
	HMI
	ID
	IEC 61131
	IEC user cycle
	Instructions
	Intended use
	IP address
	ISO 11898
	ISO 11992
	ISO 16845
	J1939
	LED
	Link
	LSB
	MAC-ID
	Master
	Misuse
	MMI
	MRAM
	MSB
	NMT
	Node
	Node Guarding
	Obj / object
	Object directory
	OBV
	OPC
	Operational
	PC card
	PCMCIA card
	PDM
	PDO
	PDU
	PES
	PGN
	Pictogram
	PID controller
	PLC configuration
	Pre-Op
	Process image
	PWM
	ratiometric
	RAW-CAN
	remanent
	ro
	RTC
	Runtime system
	rw
	SAE J1939
	SD card
	SDO
	Self-test
	Slave
	stopped
	Symbols
	System variable
	Target
	TCP
	Template
	UDP
	Use, intended
	Watchdog

	9 Index

